Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Illumination made to measure

14.05.2008
Light-emitting diodes save energy. In terms of their light output, however, they have so far been unable to compete with light bulbs. A new, low-priced optical component is set to change that situation: It concentrates the light and directs it precisely to where it is needed.

Light-emitting diodes are unbeatable in terms of energy efficiency. A one-watt LED delivers roughly the same optical output as a hundred-watt light bulb. If a high light output is required, however, the tiny light sources are not the preferred means of illumination. A novel optical component is set to change that situation.

It directs the light to the exact spot where it is needed. In the case of a desk lamp, for instance, the light can be concentrated in such a way that only a DIN-A4-sized surface in the middle of the table is brightly lit. The LED evenly illuminates the required area, while everything else stays in the dark.

“A light-emitting diode is a single-point light source that emits light in a large, uncontrolled area,” says Dr. Christian Wenzel, head of department at the Fraunhofer Institute for Production Technology IPT in Aachen. “We use special lenses to direct all of the light to the place where it is needed, thus increasing the efficiency of the LEDs. The spot of light created by the light source does not therefore fade out at the edges, but has a sharply defined edge.”

This channeling of light is based on a free-form system of optics – a plastic lens whose geometry can be shaped in any way desired. “The lenses are cast using an injection-molding technique. The two halves of the tool that serve as a mold have to be aligned with extreme precision just once – they have an accuracy of a few microns, or less than a tenth of the diameter of a hair. Once the tools have been tared, the lens can be manufactured in large batches at low cost,” says Dr. Wenzel. The researchers at the IPT have optimized the entire process chain: from planning and manufacturing the lens systems to checking their accuracy. “There’s nothing like it anywhere else in Europe,” the expert claims. There is just one challenge that had to be mastered: The plastic, which is inserted into the mold when hot, shrinks as it cools – the finished lenses are therefore slightly smaller than dictated by the mold. The researchers take this effect into account by repeated, gradual improvement – to an accuracy of a few microns.

When the lenses are finished, the scientists check them. To do this, they project a pattern of stripes onto the lens. The distortion of the stripes reveals the curvature, inclination and shape of the lens.

The researchers will demonstrate the entire process chain along with optical systems for practical application at the Optatec trade fair in Frankfurt from June 17 to 20 (Hall 3, Stand D53).

Dr.-Ing. Christian Wenzel | Fraunhofer-Gesellschaft
Further information:
http://www.ipt.fraunhofer.de

More articles from Power and Electrical Engineering:

nachricht How protons move through a fuel cell
22.06.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Fraunhofer IZFP acquires lucrative EU project for increasing nuclear power plant safety
21.06.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Hubble captures massive dead disk galaxy that challenges theories of galaxy evolution

22.06.2017 | Physics and Astronomy

New femto-camera with quadrillion fractions of a second resolution

22.06.2017 | Physics and Astronomy

Rice U. chemists create 3-D printed graphene foam

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>