Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Measuring in 3-D

17.04.2008
“The lenses used in many optical components today – for instance in car headlamps, or in digital projectors or cameras – are no longer spherical, but have free-form geometries,” says Dr. Gunther Notni of the IOF.

“Free-form geometries are not rotationally symmetrical, but may be surfaces of any shape. This makes them expensive to manufacture, and the conventional methods used so far have not allowed the lenses and mirrors to be tested thoroughly enough. Until now, it has taken over an hour to measure the aspherical lenses using high-precision coordinate measuring devices.”

For Carl Zeiss Jena GmbH, this was reason enough to develop a new measuring system for the expensive lenses in a collaborative project with the Fraunhofer researchers and IVB GmbH, a small local company.

LensShape is the result of successful cooperation between research and industry in the optical technologies. Taking ‘Success Built on Cooperation – A Faster Route from Ideas to Products’ as its motto, the Fraunhofer-Gesellschaft has already set up 11 innovation clusters all over Germany. The Jena Optical Innovation cluster JOIN is one of them.

The optical 3-D scan system enabled the scientists to increase the speed significantly: The measuring process now takes a mere 15 minutes. There are other advantages, too: Since the surface is not touched by a scanner, scratches are avoided and the process can immediately be corrected with the aid of the data obtained. Notni explains the benefits of the new method: “We project fringe patterns onto the free form with a digital projector. These are recorded with a CCD camera from different directions. We then analyze the fringe bending on the computer, using a special mathematical method. Deviations from the reference values of as little as one micron can be quickly and easily identified. What makes the new method unique is that the data obtained can also be used for the subsequent grinding process, and this rounds off the correction cycle.”

It is not only the manufacturers of car headlamps and projector lenses who will soon benefit from the new test method. “While Carl Zeiss GmbH requires the version that measures up to 300 millimeters, we can also measure smaller lens systems down to less than 10 millimeters,” states Notni, explaining the potential that this new measuring method offers. Another well-known optics manufacturer is currently testing the technology with a view to measuring particularly small lens systems for tapping light from LEDs. IVB GmbH began marketing the new method several months ago.

Monika Weiner | alfa
Further information:
http://www.fraunhofer.de/EN/press/pi/2008/04/PressRelease10thApril2008.jsp

More articles from Power and Electrical Engineering:

nachricht How protons move through a fuel cell
22.06.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Fraunhofer IZFP acquires lucrative EU project for increasing nuclear power plant safety
21.06.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>