Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Europe launches its first procurement for ITER

17.04.2008
Fusion for Energy (F4E), the organisation for Europe’s contribution to ITER, unlocks new business opportunities for industry by launching its first ever procurement.

ITER is the world’s largest scientific partnership that aims to demonstrate the potential of fusion as an energy source, bringing together seven parties that represent half of the world’s population- the EU, Russia, Japan, China, India, South Korea and the United States.

The objective of this first procurement by Fusion for Energy is the supply of Chromium plated Copper strand that forms part of the ITER super conducting magnets in order to hold the heated gas known as plasma in position.

‘This first procurement marks the beginning of a strong partnership with European industry and research organisations in providing the components for ITER and ensuring its successful operation’ explained Fusion for Energy Director, Didier Gambier.

Fusion will generate growth and jobs by opening up new markets and opportunities to a wide range of industries and research organisations. Aside from progress in the field of fusion technologies, fusion research has contributed by means of direct or indirect spin offs to areas of medicine and health including Magnetic Resonance Imaging (MRI); material processing through advancements made in laser machining and robotics through progress made in remote handling systems.

What is Fusion for Energy?
Fusion for Energy is the European Union’s organisation responsible for providing Europe’s procurements and ‘in kind’ contribution to ITER. It will also support fusion R&D initiatives through the Broader Approach Agreement signed with Japan and prepare for the construction of demonstration fusion reactors. Fusion for Energy was set in April 2007 for a period of 35 years. Its offices are located in Barcelona, Spain.
What is ITER?
ITER aims to reproduce fusion that occurs in the sun and stars. Existing experiments have already shown that it is possible to replicate this process on Earth. ITER aims to do this at a scale and in conditions that will demonstrate the scientific and technological feasibility of fusion as an energy source.
What is fusion?
When the nuclei of light atoms come together at very high temperatures, they fuse and they release enormous amounts of energy- this is the power source for our sun and stars. To produce fusion on earth, one must heat gas to around 10 million degrees Celsius in a “cage” made by strong magnetic fields which prevent gas from escaping. The development of fusion science and technology has been the basis of the European fusion programme.
Why is fusion an attractive source of energy?
•It could provide a large-scale energy source with basic fuels which are abundant and available everywhere.
•Very low global impact on the environment – no CO2 greenhouse gas emissions.
•Day-to-day-operation of a fusion power station would not require the transport of radio-active materials.
•Power Stations would be inherently safe, with no possibility of “meltdown” or “runaway reactions”.

•There is no long-lasting radioactive waste to create a burden on future generations.

How will ITER be financed?
Most of the components that make up ITER will be contributed by the ITER parties “in kind” (i.e. by providing directly the components themselves, rather than contributing cash).

The EU as host Party for ITER, will contribute up to about 50% of the construction costs and the other parties will each contribute up to 10%.

Aris Apollonatos | alfa
Further information:
http://fusionforenergy.europa.eu/
http://www.iter.org/

More articles from Power and Electrical Engineering:

nachricht Supersonic waves may help electronics beat the heat
18.05.2018 | DOE/Oak Ridge National Laboratory

nachricht Researchers control the properties of graphene transistors using pressure
17.05.2018 | Columbia University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>