Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Europe launches its first procurement for ITER

17.04.2008
Fusion for Energy (F4E), the organisation for Europe’s contribution to ITER, unlocks new business opportunities for industry by launching its first ever procurement.

ITER is the world’s largest scientific partnership that aims to demonstrate the potential of fusion as an energy source, bringing together seven parties that represent half of the world’s population- the EU, Russia, Japan, China, India, South Korea and the United States.

The objective of this first procurement by Fusion for Energy is the supply of Chromium plated Copper strand that forms part of the ITER super conducting magnets in order to hold the heated gas known as plasma in position.

‘This first procurement marks the beginning of a strong partnership with European industry and research organisations in providing the components for ITER and ensuring its successful operation’ explained Fusion for Energy Director, Didier Gambier.

Fusion will generate growth and jobs by opening up new markets and opportunities to a wide range of industries and research organisations. Aside from progress in the field of fusion technologies, fusion research has contributed by means of direct or indirect spin offs to areas of medicine and health including Magnetic Resonance Imaging (MRI); material processing through advancements made in laser machining and robotics through progress made in remote handling systems.

What is Fusion for Energy?
Fusion for Energy is the European Union’s organisation responsible for providing Europe’s procurements and ‘in kind’ contribution to ITER. It will also support fusion R&D initiatives through the Broader Approach Agreement signed with Japan and prepare for the construction of demonstration fusion reactors. Fusion for Energy was set in April 2007 for a period of 35 years. Its offices are located in Barcelona, Spain.
What is ITER?
ITER aims to reproduce fusion that occurs in the sun and stars. Existing experiments have already shown that it is possible to replicate this process on Earth. ITER aims to do this at a scale and in conditions that will demonstrate the scientific and technological feasibility of fusion as an energy source.
What is fusion?
When the nuclei of light atoms come together at very high temperatures, they fuse and they release enormous amounts of energy- this is the power source for our sun and stars. To produce fusion on earth, one must heat gas to around 10 million degrees Celsius in a “cage” made by strong magnetic fields which prevent gas from escaping. The development of fusion science and technology has been the basis of the European fusion programme.
Why is fusion an attractive source of energy?
•It could provide a large-scale energy source with basic fuels which are abundant and available everywhere.
•Very low global impact on the environment – no CO2 greenhouse gas emissions.
•Day-to-day-operation of a fusion power station would not require the transport of radio-active materials.
•Power Stations would be inherently safe, with no possibility of “meltdown” or “runaway reactions”.

•There is no long-lasting radioactive waste to create a burden on future generations.

How will ITER be financed?
Most of the components that make up ITER will be contributed by the ITER parties “in kind” (i.e. by providing directly the components themselves, rather than contributing cash).

The EU as host Party for ITER, will contribute up to about 50% of the construction costs and the other parties will each contribute up to 10%.

Aris Apollonatos | alfa
Further information:
http://fusionforenergy.europa.eu/
http://www.iter.org/

More articles from Power and Electrical Engineering:

nachricht Engineers program tiny robots to move, think like insects
15.12.2017 | Cornell University

nachricht Electromagnetic water cloak eliminates drag and wake
12.12.2017 | Duke University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>