Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Positioning system used by iPhone and iPod breached

Apple iPhone and iPod (touch) support a new self-localization feature that uses known locations of wireless access points as well as the device's own ability to detect access points. Now ETH Zurich researchers have demonstrated that positions displayed by the devices using this system can easily be falsified. This makes it unsuitable in a number of security- and safety-critical applications.

In January, Skyhook Wireless Inc. announced that Apple would use Skyhook's WiFi Positioning System (WPS) for its popular Map applications. The WPS database contains information on access points throughout the world.

Skyhook itself provides most of the data in the database, with users contributing via direct entries to the database, and requests for localization. ETH Zurich Professor Srdjan Capkun of the Department of Computer Science and his team of researchers analysed the security of Skyhook's positioning system. The team's results demonstrate the vulnerability of Skyhook's and similar public WLAN positioning systems to location spoofing attacks.

Impersonation and elimination

When an Apple iPod or iPhone wants to find its position, it detects its neighbouring access points, and sends this information to Skyhook servers. The servers then return the access point locations to the device. Based on this data, the device computes its location. To attack this localization process, Professor Capkun's team decided to use a dual approach. First, access points from a known remote location were impersonated. Second, signals sent by access points in the vicinity were eliminated by jamming. These actions created the illusion in localized devices that their locations were different from their actual physical locations.

Simple falsification

Skyhook's WPS works by requiring a device to report the Media Access Control (MAC) addresses that it detects. However, since MAC addresses can be forged by rogue access points, they can be easily impersonated. Furthermore, access point signals can be jammed and signals from access points in the vicinity of the device can thus be eliminated. These two actions make location spoofing attacks possible. In a test case, one of the devices was misleadingly induced to show its position as being in New York City, whereas the correct position was Zurich (Switzerland).

Compromised usage

Professor Capkun explained that by demonstrating these attacks, the team hoped to point out the limitations, despite guarantees, of public WLAN-based localization services as well as of applications for such services. He said "Given the relative simplicity of the performed attacks, it is clear that the use of WLAN-based public localization systems, such as Skyhook's WPS, should be restricted in security and safety-critical applications".

Further Information

ETH Zurich
Professor Srdjan Capkun
Department of Computer Science
Telephone: +41 (0)44 632 71 90

Roman Klingler | idw
Further information:

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>