Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


More safety for cell phone batteries

Lithium-ion batteries supply the power for cell phones and PDAs, and larger devices such as laptops, cordless screwdrivers and lawnmowers are becoming increasingly dependent on this power source.

The advantage of these power storage devices lies in their high energy density and voltage (up to four volts). In terms of safety, however, they have one disadvantage – the organic electrolytes are inflammable and can easily catch fire. This has already resulted in several fires and subsequent recall campaigns. Researchers at the Fraunhofer Institute for Silicate Research ISC in Würzburg have optimized the safety of these batteries.

“We have succeeded in replacing the inflammable organic electrolytes with a non-flammable polymer that retains its shape,” says ISC team leader Dr. Kai-Christian Möller. “This considerably enhances the safety of lithium-ion batteries. What’s more, because it is a solid substance, the electrolyte cannot leak out of the battery.” The polymer used by the researchers is derived from the Ormocer® group of substances – a compound with silicon-oxygen chains that form an inorganic structure to which organic side chains become attached. The big challenge is to ensure that the polymers will efficiently conduct the lithium ions that supply the power for the cell phone and the PDA. “Normally, the more solid a polymer is, the less conductive it becomes. But we had numerous parameters that we could adjust – for example, we can use coupling elements with two, three or four arms. As a result, we have more possibilities with Ormocer®s than with a single type of plastic,” says Möller.

A prototype of the new lithium-ion batteries already exists, and the researchers will be presenting it at Hannover Messe (Hall 13, Stand E20). However, between three and five years are likely to elapse before the battery will cross shop counters in laptop computers, PDAs and cordless screwdrivers, the expert believes. The conductivity of the polymer needs further improvement to enable the battery to deliver or store as much power as possible in as short a time as possible. Once this happens, though, it is quite realistic to expect this type of battery – in conjunction with a capacitor – to be able to compete with the lead batteries in cars.

Redox flow batteries store solar energy Solar cells can be seen on the roofs of more and more houses today. The energy supplied by the sun and the wind is also increasingly being used on a large scale – in wind turbines and solar parks. But the energy supplied by the sun and the wind does not usually correspond to power requirements: On sunny days the solar cells often deliver more electricity than is needed, while solar energy may be in short supply when the sky is overcast. The amount of energy harvested from wind turbines fluctuates in a similar way.

In private solar energy plants, the surplus energy is stored in lead batteries until it is needed. The drawback of these storage systems is that they can only survive a limited number of cycles and normally have to be replaced after three to five years. In wind and solar parks, the energy is conserved by pumped storage plants. These, too, have a disadvantage: They have a relatively low rate of efficiency, which means that a lot of energy is lost. What is more, they take up a great deal of space. Redox flow batteries offer an alternative to lead batteries and pumped storage plants: They have a comparable energy density, but their service life is nearly ten times as long as that of lead batteries. So far, however, they are quite expensive in relation to their performance and energy density.

Researchers at the Fraunhofer Institute for Chemical Technology ICT in Pfinztal intend to change that situation in the years ahead: “We have developed the prototype of a redox flow battery that enables us to test various electrode materials, membranes and electrolytes as flexibly as possible,” reports ICT group leader Dr. Jens Tübke. “In this way, we can compare different redox systems in the same test set-up. This allows us to work out precisely what are the pros and cons of each system. It is not possible to compare the systems on the basis of existing documentation, as of course everyone measures them in a different test set-up.” The researchers will be presenting the test cell for the first time ever at the Hannover-Messe (Hall 13, Stand E20).

Monika Weiner | alfa
Further information:

More articles from Power and Electrical Engineering:

nachricht Greater Range and Longer Lifetime
26.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

nachricht 3-D-printed magnets
26.10.2016 | Vienna University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>