Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More safety for cell phone batteries

14.04.2008
Lithium-ion batteries supply the power for cell phones and PDAs, and larger devices such as laptops, cordless screwdrivers and lawnmowers are becoming increasingly dependent on this power source.

The advantage of these power storage devices lies in their high energy density and voltage (up to four volts). In terms of safety, however, they have one disadvantage – the organic electrolytes are inflammable and can easily catch fire. This has already resulted in several fires and subsequent recall campaigns. Researchers at the Fraunhofer Institute for Silicate Research ISC in Würzburg have optimized the safety of these batteries.

“We have succeeded in replacing the inflammable organic electrolytes with a non-flammable polymer that retains its shape,” says ISC team leader Dr. Kai-Christian Möller. “This considerably enhances the safety of lithium-ion batteries. What’s more, because it is a solid substance, the electrolyte cannot leak out of the battery.” The polymer used by the researchers is derived from the Ormocer® group of substances – a compound with silicon-oxygen chains that form an inorganic structure to which organic side chains become attached. The big challenge is to ensure that the polymers will efficiently conduct the lithium ions that supply the power for the cell phone and the PDA. “Normally, the more solid a polymer is, the less conductive it becomes. But we had numerous parameters that we could adjust – for example, we can use coupling elements with two, three or four arms. As a result, we have more possibilities with Ormocer®s than with a single type of plastic,” says Möller.

A prototype of the new lithium-ion batteries already exists, and the researchers will be presenting it at Hannover Messe (Hall 13, Stand E20). However, between three and five years are likely to elapse before the battery will cross shop counters in laptop computers, PDAs and cordless screwdrivers, the expert believes. The conductivity of the polymer needs further improvement to enable the battery to deliver or store as much power as possible in as short a time as possible. Once this happens, though, it is quite realistic to expect this type of battery – in conjunction with a capacitor – to be able to compete with the lead batteries in cars.

Redox flow batteries store solar energy Solar cells can be seen on the roofs of more and more houses today. The energy supplied by the sun and the wind is also increasingly being used on a large scale – in wind turbines and solar parks. But the energy supplied by the sun and the wind does not usually correspond to power requirements: On sunny days the solar cells often deliver more electricity than is needed, while solar energy may be in short supply when the sky is overcast. The amount of energy harvested from wind turbines fluctuates in a similar way.

In private solar energy plants, the surplus energy is stored in lead batteries until it is needed. The drawback of these storage systems is that they can only survive a limited number of cycles and normally have to be replaced after three to five years. In wind and solar parks, the energy is conserved by pumped storage plants. These, too, have a disadvantage: They have a relatively low rate of efficiency, which means that a lot of energy is lost. What is more, they take up a great deal of space. Redox flow batteries offer an alternative to lead batteries and pumped storage plants: They have a comparable energy density, but their service life is nearly ten times as long as that of lead batteries. So far, however, they are quite expensive in relation to their performance and energy density.

Researchers at the Fraunhofer Institute for Chemical Technology ICT in Pfinztal intend to change that situation in the years ahead: “We have developed the prototype of a redox flow battery that enables us to test various electrode materials, membranes and electrolytes as flexibly as possible,” reports ICT group leader Dr. Jens Tübke. “In this way, we can compare different redox systems in the same test set-up. This allows us to work out precisely what are the pros and cons of each system. It is not possible to compare the systems on the basis of existing documentation, as of course everyone measures them in a different test set-up.” The researchers will be presenting the test cell for the first time ever at the Hannover-Messe (Hall 13, Stand E20).

Monika Weiner | alfa
Further information:
http://www.fraunhofer.de/EN/press/pi/2008/april08.jsp

More articles from Power and Electrical Engineering:

nachricht Engineers program tiny robots to move, think like insects
15.12.2017 | Cornell University

nachricht Electromagnetic water cloak eliminates drag and wake
12.12.2017 | Duke University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>