Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Popcorn-ball design doubles efficiency of dye-sensitized solar cells

11.04.2008
A new approach is able to create a dramatic improvement in cheap solar cells now being developed in laboratories.

By using a popcorn-ball design -- tiny kernels clumped into much larger porous spheres -- researchers at the University of Washington are able to manipulate light and more than double the efficiency of converting solar energy to electricity. The findings will be presented today in New Orleans at the national meeting of the American Chemical Society.

"We think this can lead to a significant breakthrough in dye-sensitized solar cells," said lead author Guozhong Cao, a UW professor of materials science and engineering.

Dye-sensitized solar cells, first popularized in a scientific article in 1991, are more flexible, easier to manufacture and cheaper than existing solar technologies. Researchers have tried various rough surfaces and achieved higher and higher efficiencies. Current lab prototypes can convert just over one tenth of the incoming sun's energy into electricity. This is about half as efficient as the commercial, silicon-based cells used in rooftop panels and calculators.

The UW researchers did not attempt to maximize the overall efficiency of a dye-sensitized solar cell to match or beat these previous records. Instead, they focused on developing new approaches and compared the performance of a homogeneous rough surface with a clumping design. One of the main quandaries in making an efficient solar cell is the size of the grains. Smaller grains have bigger surface area per volume, and thus absorb more rays. But bigger clumps, closer to the wavelength of visible light, cause light to ricochet within the thin light-absorbing surface so it has a higher chance of being absorbed.

"You want to have a larger surface area by making the grains smaller," Cao said. "But if you let the light bounce back and forth several times, then you have more chances of capturing the energy."

Other researchers have tried mixing larger grains in with the small particles to scatter the light, but have little success in boosting efficiency. The UW group instead made only very tiny grains, about 15 nanometers across. (Lining up 3,500 grains end to end would equal the width of a human hair.) Then they clumped these into larger agglomerations, about 300 nanometers across. The larger balls scatter incoming rays and force light to travel a longer distance within the solar cell. The balls' complex internal structure, meanwhile, creates a surface area of about 1,000 square feet for each gram of material. This internal surface is coated with a dye that captures the light.

The researchers expected some improvement in the performance but what they saw exceeded their hopes.

"We did not expect the doubling," Cao said. "It was a happy surprise."

The overall efficiency was 2.4 percent using only small particles, which is the highest efficiency achieved for this material. With the popcorn-ball design, results presented today at the conference show an efficiency of 6.2 percent, more than double the previous performance.

"The most significant finding is the amount of increase using this unique approach," Cao said.

The experiments were performed using zinc oxide, which is less stable chemically than the more commonly used titanium oxide but easier to work with.

"We first wanted to prove the concept in an easier material. Now we are working on transferring this concept to titanium oxide," Cao said. Titanium oxide based dye-sensitized solar cells are now at 11 percent maximum efficiency. Cao hopes his strategy could push dye-sensitized solar cells' efficiency significantly over that threshold.

The research was funded by the National Science Foundation, the Department of Energy, Washington Technology Center and the Air Force Office of Scientific Research. Co-authors are postdoctoral researcher Qifeng Zhang, research associate Tammy Chou and graduate student Bryan Russo, all in the UW's department of materials science and engineering and Samson Jenekhe, a UW professor of chemical engineering.

Hannah Hickey | EurekAlert!
Further information:
http://www.washington.edu

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>