Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Popcorn-ball design doubles efficiency of dye-sensitized solar cells

11.04.2008
A new approach is able to create a dramatic improvement in cheap solar cells now being developed in laboratories.

By using a popcorn-ball design -- tiny kernels clumped into much larger porous spheres -- researchers at the University of Washington are able to manipulate light and more than double the efficiency of converting solar energy to electricity. The findings will be presented today in New Orleans at the national meeting of the American Chemical Society.

"We think this can lead to a significant breakthrough in dye-sensitized solar cells," said lead author Guozhong Cao, a UW professor of materials science and engineering.

Dye-sensitized solar cells, first popularized in a scientific article in 1991, are more flexible, easier to manufacture and cheaper than existing solar technologies. Researchers have tried various rough surfaces and achieved higher and higher efficiencies. Current lab prototypes can convert just over one tenth of the incoming sun's energy into electricity. This is about half as efficient as the commercial, silicon-based cells used in rooftop panels and calculators.

The UW researchers did not attempt to maximize the overall efficiency of a dye-sensitized solar cell to match or beat these previous records. Instead, they focused on developing new approaches and compared the performance of a homogeneous rough surface with a clumping design. One of the main quandaries in making an efficient solar cell is the size of the grains. Smaller grains have bigger surface area per volume, and thus absorb more rays. But bigger clumps, closer to the wavelength of visible light, cause light to ricochet within the thin light-absorbing surface so it has a higher chance of being absorbed.

"You want to have a larger surface area by making the grains smaller," Cao said. "But if you let the light bounce back and forth several times, then you have more chances of capturing the energy."

Other researchers have tried mixing larger grains in with the small particles to scatter the light, but have little success in boosting efficiency. The UW group instead made only very tiny grains, about 15 nanometers across. (Lining up 3,500 grains end to end would equal the width of a human hair.) Then they clumped these into larger agglomerations, about 300 nanometers across. The larger balls scatter incoming rays and force light to travel a longer distance within the solar cell. The balls' complex internal structure, meanwhile, creates a surface area of about 1,000 square feet for each gram of material. This internal surface is coated with a dye that captures the light.

The researchers expected some improvement in the performance but what they saw exceeded their hopes.

"We did not expect the doubling," Cao said. "It was a happy surprise."

The overall efficiency was 2.4 percent using only small particles, which is the highest efficiency achieved for this material. With the popcorn-ball design, results presented today at the conference show an efficiency of 6.2 percent, more than double the previous performance.

"The most significant finding is the amount of increase using this unique approach," Cao said.

The experiments were performed using zinc oxide, which is less stable chemically than the more commonly used titanium oxide but easier to work with.

"We first wanted to prove the concept in an easier material. Now we are working on transferring this concept to titanium oxide," Cao said. Titanium oxide based dye-sensitized solar cells are now at 11 percent maximum efficiency. Cao hopes his strategy could push dye-sensitized solar cells' efficiency significantly over that threshold.

The research was funded by the National Science Foundation, the Department of Energy, Washington Technology Center and the Air Force Office of Scientific Research. Co-authors are postdoctoral researcher Qifeng Zhang, research associate Tammy Chou and graduate student Bryan Russo, all in the UW's department of materials science and engineering and Samson Jenekhe, a UW professor of chemical engineering.

Hannah Hickey | EurekAlert!
Further information:
http://www.washington.edu

More articles from Power and Electrical Engineering:

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>