Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Expert foresees 10 more years of R&D to make solar energy competitive

Despite oil prices that hover around $100 a barrel, it may take at least 10 or more years of intensive research and development to reduce the cost of solar energy to levels competitive with petroleum, according to an authority on the topic.

“Solar can potentially provide all the electricity and fuel we need to power the planet,” Harry Gray, Ph.D., scheduled to speak here today at the 235th national meeting of the American Chemical Society (ACS).

His presentation, “Powering the Planet with Solar Energy,” is part of a special symposium arranged by Bruce Bursten, Ph.D., president of the ACS, the world’s largest scientific society celebrating the 10th anniversary of the Beckman Scholars Program.

“The Holy Grail of solar research is to use sunlight efficiently and directly to “split” water into its elemental constituents – hydrogen and oxygen – and then use the hydrogen as a clean fuel,” Gray said.

Gray is the Arnold O. Beckman Professor of Chemistry and Founding Director of the Beckman Institute at the California Institute of Technology. He is the principal investigator in an NSF funded Phase I Chemical Bonding Center (CBC) – a Caltech/MIT collaboration – and a principal investigator at the Caltech Center for Sustainable Energy Research (CCSER).

This research has the goal of transforming the industrialized world from one powered by fossil fuels to one powered by sunlight. The CBC research focuses on converting sunlight to chemical fuels while research in the CCSER focuses on generating electricity from sunlight and developing fuel cells.

In his talk at the ACS Presidential Symposium, Gray cited the vast potential of solar energy, noting that more energy from sunlight strikes the Earth in one hour than all of the energy consumed on the planet in one year.

The single biggest challenge, Gray said, is reducing costs so that a large-scale shift away from coal, natural gas and other non-renewable sources of electricity makes economic sense. Gray estimated the average cost of photovoltaic energy at 35 to 50 cents per kilowatt-hour. By comparison, other sources are considerably less expensive, with coal and natural gas hovering around 5-6 cents per kilowatt-hour.

Because of its other advantages – being clean and renewable, for instance – solar energy need not match the cost of conventional energy sources, Gray indicated. The breakthrough for solar energy probably will come when scientists reduce the costs of photovoltaic energy to about 10 cents per kilowatt-hour, he added. “Once it reaches that level, large numbers of consumers will start to buy in, driving the per-kilowatt price down even further. I believe we are at least ten years away from photovoltaics being competitive with more traditional forms of energy.”

Major challenges include developing cheap solar cells that work without deterioration and reducing the amounts of toxic materials used in the manufacture of these cells. But producing low cost photovoltaics is only a step in the right direction. Chemists also need to focus on the generation of clean fuels at costs that can compete with oil and coal.

Gray emphasized this point: “The pressure is on chemists to make hydrogen from something other than natural gas or coal. We’ve got to start making it from sunlight and water.”

Gray noted that the NSF CBC program currently includes Caltech and MIT, but would expand in a second phase to include several additional institutions.

A number of other presentations in the Presidential Sessions during the ACS meeting will focus on future sources of energy. Among them are:

Alan Heeger, Ph.D., of the University of California, Santa Barbara, who shared the 2000 Nobel Prize in Chemistry for his work on conductive polymers, will give a progress report on the performance of “plastic” solar cells.

Paul Alivisatos, Ph.D., of the University of California at Berkeley and co-editor of the ACS journal Nano Letters, will describe potential advantages of future solar cells using nanoscale materials, and address some of difficulties that need to be overcome.

Raymond Orbach, Ph.D., a noted researcher in theoretical and experimental physics who directs the U. S. Department of Energy’s Office of Science. Topic: “Assuring a Secure Energy Future.”

Nathan S. Lewis, George L. Argyros Professor Chemistry, Division of Chemistry and Chemical Engineering, California Institute of Technology. Topic: “Solar Energy Utilization.”

James B. Roberto, Deputy Director for Science and Technology, Oak Ridge National Laboratory, Oak Ridge National Laboratory. Topic: “Advanced Nuclear Energy Systems.”

Mildred S. Dresselhaus, Institute Professor of Physics & Electrical Engineering, Massachusetts Institute of Technology. Topic: “Hydrogen Economy.”

Héctor D. Abruña, Emile M. Chamot Professor and Chair, Department of Chemistry and Chemical Biology, Cornell University. Topic: “Electrical Energy Storage.”

Bruce C. Gates, Distinguished Professor, Department of Chemical Engineering and Materials Science, University of California-Davis. Topic: “Catalysis for Transportation Fuels.”

Charmayne Marsh | EurekAlert!
Further information:

More articles from Power and Electrical Engineering:

nachricht Fluorescent holography: Upending the world of biological imaging
25.10.2016 | Colorado State University

nachricht Did you know that infrared heating is an essential part of automotive manufacture?
25.10.2016 | Heraeus Noblelight GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>