Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Faster and more sensitive electronics thanks to compact cooling

02.04.2008
Electronics work better under cold conditions (-150oC): with less thermal noise, detectors are more sensitive and low-noise amplifiers reduce noise further.

Furthermore, the speed and reliability are increased. Dutch-sponsored researcher Srinivas Vanapalli has investigated the possibilities for the extreme cooling of electronic components at a chip level.

Besides research into extremely small structures, Vanapalli has constructed a proof-of-principle cooler, which despite the smaller dimensions, cools more effectively than conventional coolers and has therefore aroused commercial interest. Vanapalli carried out his successful research at the University of Twente, partly in cooperation with the ‘National Institute of Standard and Technology’ in Boulders, US.

He focused on miniaturising regenerative coolers. These are coolers that make use of the oscillating compression and expansion of a working gas. Two factors proved to be critical in the miniaturisation of these coolers: the cycle frequency had to be increased as well as the average pressure of the gas in the system. Both are necessary to ensure that the miniaturised system has sufficient cooling capacity.

Vanapalli constructed a cooler with a frequency of 120 Hz. This cooler was approximately three times smaller than conventional (50 Hz) coolers, yet nevertheless had a higher cooling output and cooled down the smaller dimensions much faster. The cooler was realised in close cooperation with the ‘National Institute of Standard and Technology’ in Boulder, US. Thales Cryogenics in Eindhoven has expressed a serious interest in this development, which is directly applicable to their products.

Vanapalli carried out a significant part of his research on even smaller and consequently even higher frequency coolers. This mainly concerned the balance between heat exchange and pressure drop in the micro-channels of the cooler. A good heat exchange requires many small gas channels but then the pressure loss is unacceptably high. Consequently a compromise must be sought. Test structures were etched in silicon with a typical width of 20 µm and a height of 200 µm. Theoretical models were found to accurately describe the pressure losses caused by this type of structures.

An important step towards a high-frequency microcooler is Vanapalli's research on a 1 kHz compressor that works on the basis of a metal membrane moved by a piezo stack.

Regenerative coolers
Regenerative coolers compress a working gas, usually helium, cyclically. In a regenerator, incoming hot gas transfers heat to the matrix of the regenerator, where the heat is stored for a half cycle in the heat capacity of the matrix. In the second half of the cycle the returning cold gas flowing in the opposite direction through the same channel, picks up heat from the matrix and returns the matrix to its original temperature before the cycle is repeated. At equilibrium, one end of the regenerator is at room temperature while the other end is at the cold temperature.

Srinivas Vanapalli | EurekAlert!
Further information:
http://www.utwente.nl

More articles from Power and Electrical Engineering:

nachricht Energy hybrid: Battery meets super capacitor
01.12.2016 | Technische Universität Graz

nachricht Tailor-Made Membranes for the Environment
30.11.2016 | Forschungszentrum Jülich

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>