Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Faster and more sensitive electronics thanks to compact cooling

02.04.2008
Electronics work better under cold conditions (-150oC): with less thermal noise, detectors are more sensitive and low-noise amplifiers reduce noise further.

Furthermore, the speed and reliability are increased. Dutch-sponsored researcher Srinivas Vanapalli has investigated the possibilities for the extreme cooling of electronic components at a chip level.

Besides research into extremely small structures, Vanapalli has constructed a proof-of-principle cooler, which despite the smaller dimensions, cools more effectively than conventional coolers and has therefore aroused commercial interest. Vanapalli carried out his successful research at the University of Twente, partly in cooperation with the ‘National Institute of Standard and Technology’ in Boulders, US.

He focused on miniaturising regenerative coolers. These are coolers that make use of the oscillating compression and expansion of a working gas. Two factors proved to be critical in the miniaturisation of these coolers: the cycle frequency had to be increased as well as the average pressure of the gas in the system. Both are necessary to ensure that the miniaturised system has sufficient cooling capacity.

Vanapalli constructed a cooler with a frequency of 120 Hz. This cooler was approximately three times smaller than conventional (50 Hz) coolers, yet nevertheless had a higher cooling output and cooled down the smaller dimensions much faster. The cooler was realised in close cooperation with the ‘National Institute of Standard and Technology’ in Boulder, US. Thales Cryogenics in Eindhoven has expressed a serious interest in this development, which is directly applicable to their products.

Vanapalli carried out a significant part of his research on even smaller and consequently even higher frequency coolers. This mainly concerned the balance between heat exchange and pressure drop in the micro-channels of the cooler. A good heat exchange requires many small gas channels but then the pressure loss is unacceptably high. Consequently a compromise must be sought. Test structures were etched in silicon with a typical width of 20 µm and a height of 200 µm. Theoretical models were found to accurately describe the pressure losses caused by this type of structures.

An important step towards a high-frequency microcooler is Vanapalli's research on a 1 kHz compressor that works on the basis of a metal membrane moved by a piezo stack.

Regenerative coolers
Regenerative coolers compress a working gas, usually helium, cyclically. In a regenerator, incoming hot gas transfers heat to the matrix of the regenerator, where the heat is stored for a half cycle in the heat capacity of the matrix. In the second half of the cycle the returning cold gas flowing in the opposite direction through the same channel, picks up heat from the matrix and returns the matrix to its original temperature before the cycle is repeated. At equilibrium, one end of the regenerator is at room temperature while the other end is at the cold temperature.

Srinivas Vanapalli | EurekAlert!
Further information:
http://www.utwente.nl

More articles from Power and Electrical Engineering:

nachricht Fraunhofer ISE Supports Market Development of Solar Thermal Power Plants in the MENA Region
21.02.2018 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht New tech for commercial Lithium-ion batteries finds they can be charged 5 times fast
20.02.2018 | University of Warwick

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>