Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unique locks on microchips could reduce hardware piracy

07.03.2008
Hardware piracy, or making knock-off microchips based on stolen blueprints, is a burgeoning problem in the electronics industry.

Computer engineers at the University of Michigan and Rice University have devised a comprehensive way to head off this costly infringement: Each chip would have its own unique lock and key. The patent holder would hold the keys. The chip would securely communicate with the patent-holder to unlock itself, and it could operate only after being unlocked.

The technique is called EPIC, short for Ending Piracy of Integrated Circuits. It relies on established cryptography methods and introduces subtle changes into the chip design process. But it does not affect the chips' performance or power consumption.

Michigan computer engineering doctoral student Jarrod Roy will present a paper on EPIC at the Design Automation and Test in Europe conference in Germany on March 13.

Integrated circuit piracy has risen in recent years as U.S. companies started outsourcing production of newer chips with ultra-fine features. Transferring chip blueprints to overseas locations opened new doors for bootleggers who have used the chips to make counterfeit MP3 players, cell phones and computers, among other devices.

This is a very new problem, said Igor Markov, associate professor in the Department of Electrical Engineering and Computer Science at U-M and a co-author of the paper.

"Pirated chips are sometimes being sold for pennies, but they are exactly the same as normal chips," Markov said. "They were designed in the United States and usually manufactured overseas, where intellectual property law is more lax. Someone copies the blueprints or manufactures the chips without authorization."

A cutting-edge fabrication facility costs between $3 billion and $4 billion to build in the United States., said Farinaz Koushanfar, assistant professor in the Department of Electrical and Computer Engineering at Rice University and a co-author on the paper.

"Therefore, a growing number of semiconductor companies, including Texas Instruments and Freescale (a former division of Motorola), has recently announced that they would cease manufacturing chips with finer features, and outsource production to East Asia. However, even in U.S. facilities, working chips are sometimes reported defective by individual employees and later sold in gray markets," Koushanfar said.

With EPIC protection enabled, each integrated circuit would be manufactured with a few extra switches that behave like a combination lock. Each would also have the ability to produce its own at least 64-bit random identification number that could not be changed. The chips would not be manufactured with an ID number, but instead with the tools needed to produce the number during activation.

In the EPIC framework, chips wouldn't work correctly until they were activated. To activate a chip, the manufacturer would plug it in and let it contact the patent owner over an ordinary phone line or Internet connection.

"All chips are produced from the same blueprint, but differentiate themselves when they are turned on for the first time and generate their ID," Roy said. "Nothing is known about this number before activation."

The chip would transmit its ID securely to the patent owner. The patent owner would record the number, figure out the combination to unlock that particular chip, and respond securely with the key.

The uniqueness of the activation key rules out the possibility that someone could observe it and reuse it without cracking it. Because the key is generated on the fly, it wouldn't make sense to copy it like you could copy software activation keys, which are printed on CD envelopes.

Theoretically, there are ways to illegally copy chips protected by EPIC, Markov said. But EPIC makes this very difficult.

"If someone was really bent on forging and had a hundred million dollars to spend, they could reverse-engineer the entire chip by taking it apart. But the point of piracy is to avoid such costs," he said. "The goal of a practical system like ours is not to make something impossible, but to ensure that buying a license and producing the chip legally is cheaper than forgery."

Michigan Engineering:
The University of Michigan College of Engineering is ranked among the top engineering schools in the country. Michigan Engineering boasts one of the largest engineering research budgets of any public university, at more than $130 million annually. Michigan Engineering is home to 11 academic departments and a National Science Foundation Engineering Research Center. The College plays a leading role in the Michigan Memorial Phoenix Energy Institute and the Graham Environmental Sustainability Institute. Within the College, there is a special emphasis on research in three emerging areas: nanotechnology and integrated microsystems; cellular and molecular biotechnology; and information technology. Michigan Engineering is raising $300 million for capital projects and program support in these and other areas to continue fostering breakthrough scholarly advances, an unparalleled scope of student opportunities and contributions that improve the quality of life on an international scale.

Nicole Casal Moore | EurekAlert!
Further information:
http://www.umich.edu

More articles from Power and Electrical Engineering:

nachricht New tech for commercial Lithium-ion batteries finds they can be charged 5 times fast
20.02.2018 | University of Warwick

nachricht In best circles: First integrated circuit from self-assembled polymer
19.02.2018 | Max-Planck-Institut für Polymerforschung

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>