Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unique locks on microchips could reduce hardware piracy

07.03.2008
Hardware piracy, or making knock-off microchips based on stolen blueprints, is a burgeoning problem in the electronics industry.

Computer engineers at the University of Michigan and Rice University have devised a comprehensive way to head off this costly infringement: Each chip would have its own unique lock and key. The patent holder would hold the keys. The chip would securely communicate with the patent-holder to unlock itself, and it could operate only after being unlocked.

The technique is called EPIC, short for Ending Piracy of Integrated Circuits. It relies on established cryptography methods and introduces subtle changes into the chip design process. But it does not affect the chips' performance or power consumption.

Michigan computer engineering doctoral student Jarrod Roy will present a paper on EPIC at the Design Automation and Test in Europe conference in Germany on March 13.

Integrated circuit piracy has risen in recent years as U.S. companies started outsourcing production of newer chips with ultra-fine features. Transferring chip blueprints to overseas locations opened new doors for bootleggers who have used the chips to make counterfeit MP3 players, cell phones and computers, among other devices.

This is a very new problem, said Igor Markov, associate professor in the Department of Electrical Engineering and Computer Science at U-M and a co-author of the paper.

"Pirated chips are sometimes being sold for pennies, but they are exactly the same as normal chips," Markov said. "They were designed in the United States and usually manufactured overseas, where intellectual property law is more lax. Someone copies the blueprints or manufactures the chips without authorization."

A cutting-edge fabrication facility costs between $3 billion and $4 billion to build in the United States., said Farinaz Koushanfar, assistant professor in the Department of Electrical and Computer Engineering at Rice University and a co-author on the paper.

"Therefore, a growing number of semiconductor companies, including Texas Instruments and Freescale (a former division of Motorola), has recently announced that they would cease manufacturing chips with finer features, and outsource production to East Asia. However, even in U.S. facilities, working chips are sometimes reported defective by individual employees and later sold in gray markets," Koushanfar said.

With EPIC protection enabled, each integrated circuit would be manufactured with a few extra switches that behave like a combination lock. Each would also have the ability to produce its own at least 64-bit random identification number that could not be changed. The chips would not be manufactured with an ID number, but instead with the tools needed to produce the number during activation.

In the EPIC framework, chips wouldn't work correctly until they were activated. To activate a chip, the manufacturer would plug it in and let it contact the patent owner over an ordinary phone line or Internet connection.

"All chips are produced from the same blueprint, but differentiate themselves when they are turned on for the first time and generate their ID," Roy said. "Nothing is known about this number before activation."

The chip would transmit its ID securely to the patent owner. The patent owner would record the number, figure out the combination to unlock that particular chip, and respond securely with the key.

The uniqueness of the activation key rules out the possibility that someone could observe it and reuse it without cracking it. Because the key is generated on the fly, it wouldn't make sense to copy it like you could copy software activation keys, which are printed on CD envelopes.

Theoretically, there are ways to illegally copy chips protected by EPIC, Markov said. But EPIC makes this very difficult.

"If someone was really bent on forging and had a hundred million dollars to spend, they could reverse-engineer the entire chip by taking it apart. But the point of piracy is to avoid such costs," he said. "The goal of a practical system like ours is not to make something impossible, but to ensure that buying a license and producing the chip legally is cheaper than forgery."

Michigan Engineering:
The University of Michigan College of Engineering is ranked among the top engineering schools in the country. Michigan Engineering boasts one of the largest engineering research budgets of any public university, at more than $130 million annually. Michigan Engineering is home to 11 academic departments and a National Science Foundation Engineering Research Center. The College plays a leading role in the Michigan Memorial Phoenix Energy Institute and the Graham Environmental Sustainability Institute. Within the College, there is a special emphasis on research in three emerging areas: nanotechnology and integrated microsystems; cellular and molecular biotechnology; and information technology. Michigan Engineering is raising $300 million for capital projects and program support in these and other areas to continue fostering breakthrough scholarly advances, an unparalleled scope of student opportunities and contributions that improve the quality of life on an international scale.

Nicole Casal Moore | EurekAlert!
Further information:
http://www.umich.edu

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>