Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nuclear cannibals

06.03.2008
Nuclear power will feed on itself

Nuclear energy production must increase by more than 10 percent each year from 2010 to 2050 to meet all future energy demands and replace fossil fuels, but this is an unsustainable prospect.

According to a report published in Inderscience's International Journal of Nuclear Governance, Economy and Ecology such a large growth rate will require a major improvement in nuclear power efficiency otherwise each new power plant will simply cannibalize the energy produced by earlier nuclear power plants.

Physicist Joshua Pearce of Clarion University of Pennsylvania has attempted to balance the nuclear books and finds the bottom line simply does not add up. There are several problems that he says cannot be overcome if the nuclear power option is taken in preference to renewable energy sources.

For example, the energy input required from mining and processing uranium ore to its use in a power plant that costs huge amounts of energy to build and operate cannot be offset by power production in a high growth scenario. There are also growth limits set by the grade of uranium ore. "The limit of uranium ore grade to offset greenhouse gas emissions is significantly higher than the purely thermodynamic limit set by the energy payback time," he explains.

In addition, nuclear power produces a lot of heat as a byproduct and this directly heats the Earth. This is only a relatively small effect, but as energy consumption grows it must be taken into consideration when balancing the energy equation.

However, it is the whole-of-life cycle analysis that Pearce has investigated that shows nuclear power is far from the "emission-free panacea" claimed by many of its proponents. Each stage of the nuclear-fuel cycle including power plant construction, mining/milling uranium ores, fuel conversion, enrichment (or de-enrichment of nuclear weapons), fabrication, operation, decommissioning, and for short- and long-term waste disposal contribute to greenhouse gas emissions, he explains.

Nuclear may stack up against the rampant fossil-fuel combustion we see today, but only by a factor of 12. This means that if nuclear power were taken as the major option over the next forty years or so, we would be in no better a position in terms of emissions and reliance on a single major source of energy than we are today given the enormous growth nuclear required over that timescale.

Pearce's analysis is based on current practice in the United States with regard to the mining and enrichment of ore. He suggests that rather than abandoning nuclear power, efforts should be made to improve its efficiency considerably. First, we could start utilizing only the highest-concentration ores and switch to fuel enrichment based on gas centrifuge technology, which is much more energy-efficient than current gaseous diffusion methods.

Nuclear plants might be used as combined heat and power systems so the "waste" heat is used, rather than allowing them to vent huge quantities of heat to the environment at the end of the electricity generation cycle. Pearce also suggests that we could "down-blend" nuclear weapons stockpiles to produce nuclear power plant fuel.

Albert Ang | EurekAlert!
Further information:
http://www.inderscience.com

More articles from Power and Electrical Engineering:

nachricht Electrical fields drive nano-machines a 100,000 times faster than previous methods
19.01.2018 | Technische Universität München

nachricht ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records
16.01.2018 | Institut für Solarenergieforschung GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>