Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nuclear cannibals

06.03.2008
Nuclear power will feed on itself

Nuclear energy production must increase by more than 10 percent each year from 2010 to 2050 to meet all future energy demands and replace fossil fuels, but this is an unsustainable prospect.

According to a report published in Inderscience's International Journal of Nuclear Governance, Economy and Ecology such a large growth rate will require a major improvement in nuclear power efficiency otherwise each new power plant will simply cannibalize the energy produced by earlier nuclear power plants.

Physicist Joshua Pearce of Clarion University of Pennsylvania has attempted to balance the nuclear books and finds the bottom line simply does not add up. There are several problems that he says cannot be overcome if the nuclear power option is taken in preference to renewable energy sources.

For example, the energy input required from mining and processing uranium ore to its use in a power plant that costs huge amounts of energy to build and operate cannot be offset by power production in a high growth scenario. There are also growth limits set by the grade of uranium ore. "The limit of uranium ore grade to offset greenhouse gas emissions is significantly higher than the purely thermodynamic limit set by the energy payback time," he explains.

In addition, nuclear power produces a lot of heat as a byproduct and this directly heats the Earth. This is only a relatively small effect, but as energy consumption grows it must be taken into consideration when balancing the energy equation.

However, it is the whole-of-life cycle analysis that Pearce has investigated that shows nuclear power is far from the "emission-free panacea" claimed by many of its proponents. Each stage of the nuclear-fuel cycle including power plant construction, mining/milling uranium ores, fuel conversion, enrichment (or de-enrichment of nuclear weapons), fabrication, operation, decommissioning, and for short- and long-term waste disposal contribute to greenhouse gas emissions, he explains.

Nuclear may stack up against the rampant fossil-fuel combustion we see today, but only by a factor of 12. This means that if nuclear power were taken as the major option over the next forty years or so, we would be in no better a position in terms of emissions and reliance on a single major source of energy than we are today given the enormous growth nuclear required over that timescale.

Pearce's analysis is based on current practice in the United States with regard to the mining and enrichment of ore. He suggests that rather than abandoning nuclear power, efforts should be made to improve its efficiency considerably. First, we could start utilizing only the highest-concentration ores and switch to fuel enrichment based on gas centrifuge technology, which is much more energy-efficient than current gaseous diffusion methods.

Nuclear plants might be used as combined heat and power systems so the "waste" heat is used, rather than allowing them to vent huge quantities of heat to the environment at the end of the electricity generation cycle. Pearce also suggests that we could "down-blend" nuclear weapons stockpiles to produce nuclear power plant fuel.

Albert Ang | EurekAlert!
Further information:
http://www.inderscience.com

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>