Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Position sensors: magnets know their place

28.02.2008
Non-contact position sensors are small but important parts of many modern machines. Researchers have used a phenomenon known as magnetoresistance to develop a practical, low-cost position sensor that performs better than existing designs. Commercial production will follow this year.

Electronic sensors that record the position of movable objects crop up in practically every machine, from printing presses to space rockets. The average modern car has more than 60 sensors to measure the positions of the crankshaft, throttle, clutch, suspension and dozens of other moving parts. These sensors need to be cheap (€0.5-5), yet very robust and reliable.

The oldest kinds of position sensor are mechanical switches and sliding resistors (potentiometers). Because they depend on direct electric contact, they are vulnerable to wear, corrosion and breakage, so modern designers tend to avoid them.

Instead, non-contact sensors based on magnetic phenomena are popular. In a non-contact sensor, a coil of wire (inductive and galvanometric sensors) or a semiconductor element (‘Hall effect’ sensor) detects the presence of a magnet mounted on another part of the machine.

But traditional magnetic sensors tend to be both insensitive and fairly expensive. And ‘Hall effect’ sensors have the additional disadvantage of being ‘on/off’ devices that cannot track the exact position of an object.

Introducing magnetoresistance
Partners in the MUNDIS project thought they could do better. And their results show they were right, with a market-ready product soon to follow. The EU-funded project developed more sensitive and cheaper position sensors based on magnetoresistance. This phenomenon, which describes how a magnetic field changes the electrical resistance of certain materials, has been known since the nineteenth century, but until recently had no industrial applications.

‘Giant magnetoresistance’ (GMR) was discovered in 1988 and now finds application in computer hard disks. Both GMR and another effect known as thin-film magnetoresistance (TMR) could be used for position sensors. According to MUNDIS coordinator Professor Ricardo Ibarra, however, GMR and TMR are the province of large companies, because they require huge investment in cleanrooms and other equipment developed for the semiconductor industry.

More promising for the EU-funded MUNDIS, Ibarra says, was an effect known as ballistic magnetoresistance (BMR). Electrons have a property called spin (magnetic moment) that allows them to be influenced by a magnetic field as they fly between nanoparticles (hence “ballistic”). When a current passes through nanoparticles of iron oxide deposited on a plastic film, electrons are susceptible to BMR as they travel across nanocontacts between the nanoparticles.

The MUNDIS partners experimented with two different ways of making nanoparticles. The first route, which involves grinding iron oxide with a ball mill, yielded practical sensors that are both sensitive and reasonably cheap. The second method uses electrochemistry to deposit nanoparticles directly from solution.

“We have not finished developing the electrodeposition technique, but it is very promising,” says Ibarra. “It can create devices that are even more sensitive, and they should eventually be cheaper, too.”

Vertical focus
From the start, MUNDIS aimed to create a practical BMR device: a gear stick position sensor for the automotive industry. This is a four-position ‘on/off’ sensor with a target cost of €5, falling to €4 with bulk production.

By January 2008, three months before it was due to finish, the project had shown excellent results. The partners had developed all the parts needed for a complete gear stick position sensor: the film-based sensor itself, the associated printed circuit board, and a magnet carrier. Tests showed that the device can operate reliably for 10 million cycles, as well as withstanding vibration, humidity and thermal stress.

The technology is patented and licensed to two Spanish SMEs who were partners in the project. Aragonesa de Componentes Pasivos (ACP), a manufacturer of electronic components including position sensors, makes the sensor material. Ficosa International, which makes automotive components and systems, then assembles the complete sensor. The cost is even lower than the original target, and the new sensors will be on the market within a few months, Ibarra says.

Tasks remaining to be done include improving control of the initial resistance of the sensor material, and gaining a better understanding of what happens within the nanostructure.

“Although the sensors work well, it may be that not all of the magnetoresistive effect in fact comes from BMR,” says Ibarra. To study the mechanism of BMR in detail, the researchers are now using a focused ion beam to build tiny circuits, less than 1 µm in size, involving just a few nanoparticles.

The sensors can be made in almost any shape, Ibarra says, and in principle there is no lower limit to their size. Since smaller sensors are expected to work better than large ones, some innovative applications might emerge.

One exciting potential application is in biosensing. “If we could get a magnetic nanoparticle to stick to a microorganism, then we could use a BMR sensor to detect the magnetic particle and hence the organism,” Ibarra suggests. This is clearly a technology with potential.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/89583

More articles from Power and Electrical Engineering:

nachricht Researchers take next step toward fusion energy
16.11.2017 | Texas A&M University

nachricht Desert solar to fuel centuries of air travel
16.11.2017 | SolarPACES

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>