Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Position sensors: magnets know their place

28.02.2008
Non-contact position sensors are small but important parts of many modern machines. Researchers have used a phenomenon known as magnetoresistance to develop a practical, low-cost position sensor that performs better than existing designs. Commercial production will follow this year.

Electronic sensors that record the position of movable objects crop up in practically every machine, from printing presses to space rockets. The average modern car has more than 60 sensors to measure the positions of the crankshaft, throttle, clutch, suspension and dozens of other moving parts. These sensors need to be cheap (€0.5-5), yet very robust and reliable.

The oldest kinds of position sensor are mechanical switches and sliding resistors (potentiometers). Because they depend on direct electric contact, they are vulnerable to wear, corrosion and breakage, so modern designers tend to avoid them.

Instead, non-contact sensors based on magnetic phenomena are popular. In a non-contact sensor, a coil of wire (inductive and galvanometric sensors) or a semiconductor element (‘Hall effect’ sensor) detects the presence of a magnet mounted on another part of the machine.

But traditional magnetic sensors tend to be both insensitive and fairly expensive. And ‘Hall effect’ sensors have the additional disadvantage of being ‘on/off’ devices that cannot track the exact position of an object.

Introducing magnetoresistance
Partners in the MUNDIS project thought they could do better. And their results show they were right, with a market-ready product soon to follow. The EU-funded project developed more sensitive and cheaper position sensors based on magnetoresistance. This phenomenon, which describes how a magnetic field changes the electrical resistance of certain materials, has been known since the nineteenth century, but until recently had no industrial applications.

‘Giant magnetoresistance’ (GMR) was discovered in 1988 and now finds application in computer hard disks. Both GMR and another effect known as thin-film magnetoresistance (TMR) could be used for position sensors. According to MUNDIS coordinator Professor Ricardo Ibarra, however, GMR and TMR are the province of large companies, because they require huge investment in cleanrooms and other equipment developed for the semiconductor industry.

More promising for the EU-funded MUNDIS, Ibarra says, was an effect known as ballistic magnetoresistance (BMR). Electrons have a property called spin (magnetic moment) that allows them to be influenced by a magnetic field as they fly between nanoparticles (hence “ballistic”). When a current passes through nanoparticles of iron oxide deposited on a plastic film, electrons are susceptible to BMR as they travel across nanocontacts between the nanoparticles.

The MUNDIS partners experimented with two different ways of making nanoparticles. The first route, which involves grinding iron oxide with a ball mill, yielded practical sensors that are both sensitive and reasonably cheap. The second method uses electrochemistry to deposit nanoparticles directly from solution.

“We have not finished developing the electrodeposition technique, but it is very promising,” says Ibarra. “It can create devices that are even more sensitive, and they should eventually be cheaper, too.”

Vertical focus
From the start, MUNDIS aimed to create a practical BMR device: a gear stick position sensor for the automotive industry. This is a four-position ‘on/off’ sensor with a target cost of €5, falling to €4 with bulk production.

By January 2008, three months before it was due to finish, the project had shown excellent results. The partners had developed all the parts needed for a complete gear stick position sensor: the film-based sensor itself, the associated printed circuit board, and a magnet carrier. Tests showed that the device can operate reliably for 10 million cycles, as well as withstanding vibration, humidity and thermal stress.

The technology is patented and licensed to two Spanish SMEs who were partners in the project. Aragonesa de Componentes Pasivos (ACP), a manufacturer of electronic components including position sensors, makes the sensor material. Ficosa International, which makes automotive components and systems, then assembles the complete sensor. The cost is even lower than the original target, and the new sensors will be on the market within a few months, Ibarra says.

Tasks remaining to be done include improving control of the initial resistance of the sensor material, and gaining a better understanding of what happens within the nanostructure.

“Although the sensors work well, it may be that not all of the magnetoresistive effect in fact comes from BMR,” says Ibarra. To study the mechanism of BMR in detail, the researchers are now using a focused ion beam to build tiny circuits, less than 1 µm in size, involving just a few nanoparticles.

The sensors can be made in almost any shape, Ibarra says, and in principle there is no lower limit to their size. Since smaller sensors are expected to work better than large ones, some innovative applications might emerge.

One exciting potential application is in biosensing. “If we could get a magnetic nanoparticle to stick to a microorganism, then we could use a BMR sensor to detect the magnetic particle and hence the organism,” Ibarra suggests. This is clearly a technology with potential.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/89583

More articles from Power and Electrical Engineering:

nachricht Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts
08.12.2016 | Institut für Solarenergieforschung GmbH

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts

08.12.2016 | Power and Electrical Engineering

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>