Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Special coating greatly improves solar cell performance

26.02.2008
The energy from sunlight falling on only 9 percent of California’s Mojave Desert could power all of the United States’ electricity needs if the energy could be efficiently harvested, according to some estimates. Unfortunately, current-generation solar cell technologies are too expensive and inefficient for wide-scale commercial applications.

A team of Northwestern University researchers has developed a new anode coating strategy that significantly enhances the efficiency of solar energy power conversion. A paper about the work, which focuses on “engineering” organic material-electrode interfaces in bulk-heterojunction organic solar cells, is published online this week in the Proceedings of the National Academy of Sciences (PNAS).

This breakthrough in solar energy conversion promises to bring researchers and developers worldwide closer to the goal of producing cheaper, more manufacturable and more easily implemented solar cells. Such technology would greatly reduce our dependence on burning fossil fuels for electricity production as well as reduce the combustion product: carbon dioxide, a global warming greenhouse gas.

Tobin J. Marks, the Vladimir N. Ipatieff Research Professor in Chemistry in the Weinberg College of Arts and Sciences and professor of materials science and engineering, and Robert Chang, professor of materials science and engineering in the McCormick School of Engineering and Applied Science, led the research team. Other Northwestern team members were researcher Bruce Buchholz and graduate students Michael D. Irwin and Alexander W. Hains.

Of the new solar energy conversion technologies on the horizon, solar cells fabricated from plastic-like organic materials are attractive because they could be printed cheaply and quickly by a process similar to printing a newspaper (roll-to-roll processing).

To date, the most successful type of plastic photovoltaic cell is called a “bulk-heterojunction cell.” This cell utilizes a layer consisting of a mixture of a semiconducting polymer (an electron donor) and a fullerene (an electron acceptor) sandwiched between two electrodes -- one a transparent electrically conducting electrode (the anode, which is usually a tin-doped indium oxide) and a metal (the cathode), such as aluminum.

When light enters through the transparent conducting electrode and strikes the light-absorbing polymer layer, electricity flows due to formation of pairs of electrons and holes that separate and move to the cathode and anode, respectively. These moving charges are the electrical current (photocurrent) generated by the cell and are collected by the two electrodes, assuming that each type of charge can readily traverse the interface between the polymer-fullerene active layer and the correct electrode to carry away the charge -- a significant challenge.

The Northwestern researchers employed a laser deposition technique that coats the anode with a very thin (5 to 10 nanometers thick) and smooth layer of nickel oxide. This material is an excellent conductor for extracting holes from the irradiated cell but, equally important, is an efficient “blocker” which prevents misdirected electrons from straying to the “wrong” electrode (the anode), which would compromise the cell energy conversion efficiency.

In contrast to earlier approaches for anode coating, the Northwestern nickel oxide coating is cheap, electrically homogeneous and non-corrosive. In the case of model bulk-heterojunction cells, the Northwestern team has increased the cell voltage by approximately 40 percent and the power conversion efficiency from approximately 3 to 4 percent to 5.2 to 5.6 percent.

The researchers currently are working on further tuning the anode coating technique for increased hole extraction and electron blocking efficiency and moving to production-scaling experiments on flexible substrates.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Power and Electrical Engineering:

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

nachricht Positrons as a new tool for lithium ion battery research: Holes in the electrode
22.02.2017 | Technische Universität München

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>