Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Special coating greatly improves solar cell performance

26.02.2008
The energy from sunlight falling on only 9 percent of California’s Mojave Desert could power all of the United States’ electricity needs if the energy could be efficiently harvested, according to some estimates. Unfortunately, current-generation solar cell technologies are too expensive and inefficient for wide-scale commercial applications.

A team of Northwestern University researchers has developed a new anode coating strategy that significantly enhances the efficiency of solar energy power conversion. A paper about the work, which focuses on “engineering” organic material-electrode interfaces in bulk-heterojunction organic solar cells, is published online this week in the Proceedings of the National Academy of Sciences (PNAS).

This breakthrough in solar energy conversion promises to bring researchers and developers worldwide closer to the goal of producing cheaper, more manufacturable and more easily implemented solar cells. Such technology would greatly reduce our dependence on burning fossil fuels for electricity production as well as reduce the combustion product: carbon dioxide, a global warming greenhouse gas.

Tobin J. Marks, the Vladimir N. Ipatieff Research Professor in Chemistry in the Weinberg College of Arts and Sciences and professor of materials science and engineering, and Robert Chang, professor of materials science and engineering in the McCormick School of Engineering and Applied Science, led the research team. Other Northwestern team members were researcher Bruce Buchholz and graduate students Michael D. Irwin and Alexander W. Hains.

Of the new solar energy conversion technologies on the horizon, solar cells fabricated from plastic-like organic materials are attractive because they could be printed cheaply and quickly by a process similar to printing a newspaper (roll-to-roll processing).

To date, the most successful type of plastic photovoltaic cell is called a “bulk-heterojunction cell.” This cell utilizes a layer consisting of a mixture of a semiconducting polymer (an electron donor) and a fullerene (an electron acceptor) sandwiched between two electrodes -- one a transparent electrically conducting electrode (the anode, which is usually a tin-doped indium oxide) and a metal (the cathode), such as aluminum.

When light enters through the transparent conducting electrode and strikes the light-absorbing polymer layer, electricity flows due to formation of pairs of electrons and holes that separate and move to the cathode and anode, respectively. These moving charges are the electrical current (photocurrent) generated by the cell and are collected by the two electrodes, assuming that each type of charge can readily traverse the interface between the polymer-fullerene active layer and the correct electrode to carry away the charge -- a significant challenge.

The Northwestern researchers employed a laser deposition technique that coats the anode with a very thin (5 to 10 nanometers thick) and smooth layer of nickel oxide. This material is an excellent conductor for extracting holes from the irradiated cell but, equally important, is an efficient “blocker” which prevents misdirected electrons from straying to the “wrong” electrode (the anode), which would compromise the cell energy conversion efficiency.

In contrast to earlier approaches for anode coating, the Northwestern nickel oxide coating is cheap, electrically homogeneous and non-corrosive. In the case of model bulk-heterojunction cells, the Northwestern team has increased the cell voltage by approximately 40 percent and the power conversion efficiency from approximately 3 to 4 percent to 5.2 to 5.6 percent.

The researchers currently are working on further tuning the anode coating technique for increased hole extraction and electron blocking efficiency and moving to production-scaling experiments on flexible substrates.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Power and Electrical Engineering:

nachricht Organic-inorganic heterostructures with programmable electronic properties
29.03.2017 | Technische Universität Dresden

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>