Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Special coating greatly improves solar cell performance

26.02.2008
The energy from sunlight falling on only 9 percent of California’s Mojave Desert could power all of the United States’ electricity needs if the energy could be efficiently harvested, according to some estimates. Unfortunately, current-generation solar cell technologies are too expensive and inefficient for wide-scale commercial applications.

A team of Northwestern University researchers has developed a new anode coating strategy that significantly enhances the efficiency of solar energy power conversion. A paper about the work, which focuses on “engineering” organic material-electrode interfaces in bulk-heterojunction organic solar cells, is published online this week in the Proceedings of the National Academy of Sciences (PNAS).

This breakthrough in solar energy conversion promises to bring researchers and developers worldwide closer to the goal of producing cheaper, more manufacturable and more easily implemented solar cells. Such technology would greatly reduce our dependence on burning fossil fuels for electricity production as well as reduce the combustion product: carbon dioxide, a global warming greenhouse gas.

Tobin J. Marks, the Vladimir N. Ipatieff Research Professor in Chemistry in the Weinberg College of Arts and Sciences and professor of materials science and engineering, and Robert Chang, professor of materials science and engineering in the McCormick School of Engineering and Applied Science, led the research team. Other Northwestern team members were researcher Bruce Buchholz and graduate students Michael D. Irwin and Alexander W. Hains.

Of the new solar energy conversion technologies on the horizon, solar cells fabricated from plastic-like organic materials are attractive because they could be printed cheaply and quickly by a process similar to printing a newspaper (roll-to-roll processing).

To date, the most successful type of plastic photovoltaic cell is called a “bulk-heterojunction cell.” This cell utilizes a layer consisting of a mixture of a semiconducting polymer (an electron donor) and a fullerene (an electron acceptor) sandwiched between two electrodes -- one a transparent electrically conducting electrode (the anode, which is usually a tin-doped indium oxide) and a metal (the cathode), such as aluminum.

When light enters through the transparent conducting electrode and strikes the light-absorbing polymer layer, electricity flows due to formation of pairs of electrons and holes that separate and move to the cathode and anode, respectively. These moving charges are the electrical current (photocurrent) generated by the cell and are collected by the two electrodes, assuming that each type of charge can readily traverse the interface between the polymer-fullerene active layer and the correct electrode to carry away the charge -- a significant challenge.

The Northwestern researchers employed a laser deposition technique that coats the anode with a very thin (5 to 10 nanometers thick) and smooth layer of nickel oxide. This material is an excellent conductor for extracting holes from the irradiated cell but, equally important, is an efficient “blocker” which prevents misdirected electrons from straying to the “wrong” electrode (the anode), which would compromise the cell energy conversion efficiency.

In contrast to earlier approaches for anode coating, the Northwestern nickel oxide coating is cheap, electrically homogeneous and non-corrosive. In the case of model bulk-heterojunction cells, the Northwestern team has increased the cell voltage by approximately 40 percent and the power conversion efficiency from approximately 3 to 4 percent to 5.2 to 5.6 percent.

The researchers currently are working on further tuning the anode coating technique for increased hole extraction and electron blocking efficiency and moving to production-scaling experiments on flexible substrates.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Power and Electrical Engineering:

nachricht Stanford researchers develop a new type of soft, growing robot
21.07.2017 | Stanford University

nachricht Team develops fast, cheap method to make supercapacitor electrodes
18.07.2017 | University of Washington

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>