Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ETH Zurich competence center ESC introduces energy strategy. Long-term objective 1-ton CO2 society

26.02.2008
In the past year, various reports from the United Nations’ Intergovernmental Panel on Climate Change (IPCC) have warned the world in no uncertain terms that in order to achieve a stable climate on our planet by the end of this century, any increase in CO2 emissions in the coming decades must be curbed before the emissions can be appreciably reduced. According to the IPCC, the maxi-mum amount of CO2 emissions that can be tolerated globally by the end of the 21st century amounts to roughly 2000 gigatons. This will mean a considerable reduction in the emission of CO2 per capita.

The per capita emission of carbon dioxide in Switzerland is currently 9 tons per year, approximately twice the global average. «Our objective for the climate and energy policy for the century has to be to induce each member of the human race to produce not more than 1 ton of carbon dioxide per year», Professor Ralph Eichler, President ETH Zurich, explained to the media today.

Systematic implementation of 3E strategy

This proposed emission target for carbon dioxide may seem ambitious by to-day’s standards, but it can be achieved by the end of the century both in Swit-zerland and throughout the world. This is reflected in the calculations made by ETH Zurich’s own Energy Science Center (ESC). In order to reach the target, an energy strategy will have to be consistently implemented. As stated by Profes-sor Konstantinos Boulouchos, the proposed strategy is based on three pillars: 1) the exhaustion of efficiency potential, 2) the extended use of renewable energy sources and 3) the increased share of electricity in the energy mix.

Exhausting the efficiency potential will mean increasing efficiency in every link of the energy conversion chain, from extraction at the energy source, through stor-age and distribution up to energy usage. This alone would harbour great sav-ings potential, especially when combined with market-based instruments to in-fluence the demand side.

The second E of the strategy focuses on the use of renewable energy sources, such as photovoltaics, water, and wind. Important to note is that economic as well as ecological aspects must be taken into consideration when using renew-able energy sources.

Electricity as the backbone of the energy system

The newcomer to the 3-E strategy constitutes the third E: electrification. Accord-ing to ETH Zurich researchers, in future C02 poor electricity will establish itself as the backbone of a sustainable energy system. It is increasingly being used in heating and cooling buildings (with heat pumps, for example), and is expected to extend to individual mobility (moving, in the long run, from hybrid vehicles to fully electric cars).

A reorientation of the energy system, however, will not happen overnight. It is likely to take several decades. All the more reason that it is crucial that steps be taken today: infrastructure in industrialized countries (transmission network, power plants) needs to be renewed and in threshold countries, erected.

Innovative research at ETH Zurich

ETH Zurich conducts intensive research with a mind to finding new solutions and methods to face the CO2 problem. Professor Marco Mazzotti from the Insti-tute for Process Engineering is researching the possibilities of eliminating CO2 in fossil-fueled power stations and combining it with stable and solid substances. This so-called mineralization thus facilitates the permanent and secure storage of greenhouse gases. Power electronics are becoming increasingly smaller and more efficient: the research group headed by Professor Johann Kolar from the Power Electronic Systems Laboratory is devoted to developing such compo-nents that are deployed, for example, in hybrid vehicles. Efficient control of the drive system of such cars makes a significant contribution towards environmen-tally-friendly private transport.

Promising ETH Zurich research is also being carried out in the field of building systems engineering. The technology at our fingertips today would already en-able us to replace CO2-emitting heating and boiler systems with a combination of innovative wall insulation and heat pumps – with free renewable energy from the ground. This ingenious concept is also just the ticket for existing buildings. «We just need to get cracking», explains Professor HansJürg Leibundgut from the Institute for Building Systems. Within five to six years it should be possible to produce the necessary components on an industrial level so that for the price of a mid-range car, a four-room apartment can be refurbished, with the effect that practically all of the CO2 previously generated by heating and warm water can be prevented.

Prof. Konstantinos Boulouchos | alfa
Further information:
http://www.esc.ethz.ch/

More articles from Power and Electrical Engineering:

nachricht In best circles: First integrated circuit from self-assembled polymer
19.02.2018 | Max-Planck-Institut für Polymerforschung

nachricht System draws power from daily temperature swings
16.02.2018 | Massachusetts Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Japanese researchers develop ultrathin, highly elastic skin display

19.02.2018 | Information Technology

Dispersal of Fish Eggs by Water Birds – Just a Myth?

19.02.2018 | Ecology, The Environment and Conservation

Studying mitosis' structure to understand the inside of cancer cells

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>