Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New aluminum-rich alloy produces hydrogen on-demand for large-scale uses

21.02.2008
Purdue University engineers have developed a new aluminum-rich alloy that produces hydrogen by splitting water and is economically competitive with conventional fuels for transportation and power generation.

"We now have an economically viable process for producing hydrogen on-demand for vehicles, electrical generating stations and other applications," said Jerry Woodall, a distinguished professor of electrical and computer engineering at Purdue who invented the process.

The new alloy contains 95 percent aluminum and 5 percent of an alloy that is made of the metals gallium, indium and tin. Because the new alloy contains significantly less of the more expensive gallium than previous forms of the alloy, hydrogen can be produced less expensively, he said.

When immersed in water, the alloy splits water molecules into hydrogen and oxygen, which immediately reacts with the aluminum to produce aluminum oxide, also called alumina, which can be recycled back into aluminum. Recycling aluminum from nearly pure alumina is less expensive than mining the aluminum-containing ore bauxite, making the technology more competitive with other forms of energy production, Woodall said.

"After recycling both the aluminum oxide back to aluminum and the inert gallium-indium-tin alloy only 60 times, the cost of producing energy both as hydrogen and heat using the technology would be reduced to 10 cents per kilowatt hour, making it competitive with other energy technologies," Woodall said.

The researchers will present findings about the new alloy on Feb. 26 during the conference Materials Innovations in an Emerging Hydrogen Economy, which runs Feb. 24-27 in Cocoa Beach, Fla..

A key to developing the alloy for large-scale technologies is controlling the microscopic structure of the solid aluminum and the gallium-indium-tin alloy mixture.

"This is because the mixture tends to resist forming entirely as a homogeneous solid due to the different crystal structures of the elements in the alloy and the low melting point of the gallium-indium-tin alloy," Woodall said.

The alloy is said to have two phases because it contains abrupt changes in composition from one constituent to another.

"I can form a one-phase melt of liquid aluminum and the gallium-indium-tin alloy by heating it. But when I cool it down, most of the gallium-indium-tin alloy is not homogeneously incorporated into the solid aluminum, but remains a separate phase of liquid," Woodall said. "The constituents separate into two phases just like ice and liquid water."

The two-phase composition seems to be critical for the technology to work because it enables the aluminum alloy to react with water and produce hydrogen.

The researchers had earlier discovered that slow-cooling and fast-cooling the new 95/5 aluminum alloy produced drastically different versions. The fast-cooled alloy contained aluminum and the gallium-indium-tin alloy apparently as a single phase. In order for it to produce hydrogen, it had to be in contact with a puddle of the liquid gallium-indium-tin alloy.

"That was a very exciting finding because it showed that the alloy would react with water at room temperature to produce hydrogen until all of the aluminum was used up," Woodall said.

The engineers were surprised to learn late last year, however, that slow-cooling formed a two-phase solid alloy, meaning solid pieces of the 95/5 aluminum alloy react with water to produce hydrogen, eliminating the need for the liquid gallium-indium-tin alloy.

"That was a fantastic discovery," Woodall said. "What used to be a curiosity is now a real alternative energy technology."

The research is partially funded by Purdue's Energy Center at the university's Discovery Park.

"This technology has exciting potential, and I hope that it receives a fair and detailed evaluation and consideration from the scientific, government and business communities," said Jay Gore, the Vincent P. Reilly Professor of Mechanical Engineering and interim director of the Energy Center.

The slow-cooling technique made it possible to create forms of the alloy containing higher concentrations of aluminum.

The Purdue researchers are developing a method to create briquettes of the alloy that could be placed in a tank to react with water and produce hydrogen on-demand. Such a technology would eliminate the need to store and transport hydrogen, two potential stumbling blocks in developing a hydrogen economy, Woodall said.

The gallium-indium-tin alloy component is inert, which means it can be recovered and reused at an efficiency approaching 100 percent, he said

"The aluminum oxide is recycled back into aluminum using the currently preferred industrial process called the Hall-Héroult process, which produces one-third as much carbon dioxide as combusting gasoline in an engine," Woodall said.

The aluminum splits water by reacting with the oxygen atoms in water molecules, liberating hydrogen in the process. The gallium-indium-tin alloy is a critical component because it hinders the formation of a "passivating" aluminum oxide skin normally created on pure aluminum's surface after bonding with oxygen, a process called oxidation. This skin usually acts as a barrier and prevents oxygen from reacting with bulk aluminum. Reducing the skin's protective properties allows the reaction to continue until all of the aluminum is used to generate hydrogen, Woodall said.

"This skin is like an eggshell," he said. "Think of trying to fry an egg without breaking the shell."

The researchers developed the new alloy in late 2007 and are reporting about it for the first time during the conference.

"We now have a simple process for making 95/5, and we know the process splits water and produces hydrogen until all of the aluminum alloy is used up," Woodall said.

For the technology to be used in major applications such as cars and trucks or for power plants, however, a large-scale recycling program would be required to turn the alumina back into aluminum and to recover the gallium-indium-tin alloy. Other infrastructure components, such as those related to manufacturing and the supply chain, also would have to be developed, he said.

"So the economic risk is large, but the potential payoff is also large," said Woodall, who received the 2001 National Medal of Technology, the nation's highest award for technological achievement.

Aluminum, the most abundant metal on earth, is refined from the raw mineral bauxite, which also contains gallium.

Future research will include work to learn more about the chemical mechanisms behind the process and the microscopic structure of the alloy.

The Purdue Research Foundation holds title to the primary patent, which has been filed with the U.S. Patent and Trademark Office and is pending. An Indiana startup company, AlGalCo LLC., has received a license for the exclusive right to commercialize the process.

Writer: Emil Venere, (765) 494-4709, venere@purdue.edu
Source: Jerry M. Woodall, (765) 494-3479, woodall@dynamo.ecn.purdue.edu
Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>