Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solar cell directly splits water for hydrogen

18.02.2008
Plants trees and algae do it. Even some bacteria and moss do it, but scientists have had a difficult time developing methods to turn sunlight into useful fuel. Now, Penn State researchers have a proof-of-concept device that can split water and produce recoverable hydrogen.

"This is a proof-of-concept system that is very inefficient. But ultimately, catalytic systems with 10 to 15 percent solar conversion efficiency might be achievable," says Thomas E. Mallouk, the DuPont Professor of Materials Chemistry and Physics. "If this could be realized, water photolysis would provide a clean source of hydrogen fuel from water and sunlight."

Although solar cells can now produce electricity from visible light at efficiencies of greater than 10 percent, solar hydrogen cells – like those developed by Craig Grimes, professor of electrical engineering at Penn State – have been limited by the poor spectral response of the semiconductors used. In principle, molecular light absorbers can use more of the visible spectrum in a process that is mimetic of natural photosynthesis. Photosynthesis uses chlorophyll and other dye molecules to absorb visible light.

So far, experiments with natural and synthetic dye molecules have produced either hydrogen or oxygen-using chemicals consumed in the process, but have not yet created an ongoing, continuous process. Those processes also generally would cost more than splitting water with electricity. One reason for the difficulty is that once produced, hydrogen and oxygen easily recombine. The catalysts that have been used to study the oxygen and hydrogen half-reactions are also good catalysts for the recombination reaction.

Mallouk and W. Justin Youngblood, postdoctoral fellow in chemistry, together with collaborators at Arizona State University, developed a catalyst system that, combined with a dye, can mimic the electron transfer and water oxidation processes that occur in plants during photosynthesis. They reported the results of their experiments at the annual meeting of the American Association for the Advancement of Science today (Feb. 17) in Boston.

The key to their process is a tiny complex of molecules with a center catalyst of iridium oxide molecules surrounded by orange-red dye molecules. These clusters are about 2 nanometers in diameter with the catalyst and dye components approximately the same size. The researchers chose orange-red dye because it absorbs sunlight in the blue range, which has the most energy. The dye used has also been thoroughly studied in previous artificial photosynthesis experiments.

They space the dye molecules around the center core leaving surface area on the catalyst for the reaction. When visible light strikes the dye, the energy excites electrons in the dye, which, with the help of the catalyst, can split the water molecule, creating free oxygen.

"Each surface iridium atom can cycle through the water oxidation reaction about 50 times per second," says Mallouk. "That is about three orders of magnitude faster than the next best synthetic catalysts, and comparable to the turnover rate of Photosystem II in green plant photosynthesis." Photosystem II is the protein complex in plants that oxidizes water and starts the photosynthetic process.

The researchers impregnated a titanium dioxide electrode with the catalyst complex for the anode and used a platinum cathode. They immersed the electrodes in a salt solution, but separated them from each other to avoid the problem of the hydrogen and oxygen recombining. Light need only shine on the dye-sensitized titanium dioxide anode for the system to work. This type of cell is similar to those that produce electricity, but the addition of the catalyst allows the reaction to split the water into its component gases.

The water splitting requires 1.23 volts, and the current experimental configuration cannot quite achieve that level so the researchers add about 0.3 volts from an outside source. Their current system achieves an efficiency of about 0.3 percent.

"Nature is only 1 to 3 percent efficient with photosynthesis," says Mallouk. "Which is why you can not expect the clippings from your lawn to power your house and your car. We would like not to have to use all the land area that is used for agriculture to get the energy we need from solar cells."

The researchers have a variety of approaches to improve the process. They plan to investigate improving the efficiency of the dye, improving the catalyst and adjusting the general geometry of the system. Rather than spherical dye catalyst complexes, a different geometry that keeps more of the reacting area available to the sun and the reactants might be better. Improvements to the overall geometry may also help.

"At every branch in the process, there is a choice," says Mallouk. "The question is how to get the electrons to stay in the proper path and not, for example, release their energy and go down to ground state without doing any work."

The distance between molecules is important in controlling the rate of electron transfer and getting the electrons where they need to go. By shortening some of the distances and making others longer, more of the electrons would take the proper path and put their energy to work splitting water and producing hydrogen.

Andrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Power and Electrical Engineering:

nachricht Improved stability of plastic light-emitting diodes
19.04.2018 | Max-Planck-Institut für Polymerforschung

nachricht Intelligent components for the power grid of the future
18.04.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>