Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Virtual’ reality check for superconductors

13.02.2008
Researchers at RIKEN’s Discovery Research Institute in Wako, in collaboration with researchers from Cornell University in the US, and Kyoto University, have refined a method that measures small electronic excitations in superconductors.

New clues important to our understanding of superconductivity are provided by precise measurements of electronic states

Researchers at RIKEN’s Discovery Research Institute in Wako, in collaboration with researchers from Cornell University in the US, and Kyoto University, have refined a method that measures small electronic excitations in superconductors. Comparisons of these properties for different materials have provided valuable clues towards our understanding of superconductivity.

The classical theory of superconductivity describes the superconducting state arising through the pairing of electrons into pairs. The properties of these electron pairs, however, are difficult to model mathematically. Physicists therefore prefer to describe them as a virtual single ‘quasiparticle’. “Although these quasiparticles are fictitious, they really govern the electronic states of superconductors, particularly at low energies,” explains Tetsuo Hanaguri from the research team.

Many details of the electronic states of quasiparticles and the precise amount of energy it takes to break up the electron pairs are difficult to measure, and remain poorly understood. This ‘break-up energy’, referred to as the ‘superconducting gap’, is traditionally considered as being directly related to the critical temperature where superconductivity persists. The larger the gap, the greater the difficultly to break up the electron pairs, thus the higher the critical temperature is for superconductivity. However, this relation has never been confirmed for the so-called ‘high-temperature’ superconductors, whose mechanism of superconductivity remains a mystery.

Reporting in the journal Nature Physics1, the RIKEN researchers have now measured the properties of the quasiparticles using a scanning tunneling microscope that scans the surface of a superconducting material with an atomic resolution and records tiny variations in the electronic structure. However, the observed periodic variations in the electronic properties are difficult to analyze as a number of effects contribute to these regular patterns. Therefore, Hanaguri and colleagues developed a novel mathematical technique to successfully pick out the quasiparticle signatures.

This mathematical technique allows the researchers to characterize several materials and compare their superconducting properties. Surprisingly, the relative variation in the superconducting gap was found to be the same for two different high-temperature superconductors, although their critical temperature differs by a factor of three. This shows that, contrary to conventional assumptions, the superconducting state is influenced by more than just the size of the superconducting gap.

To better understand the relation between superconducting gap and superconductivity, Hanaguri says that further measurements are needed to determine the effect of temperature and magnetic field on the quasiparticles. Ultimately, these measurements may provide vital clues on the fundamental mechanisms governing high-temperature superconductors.

1. Hanaguri, T., Kohsaka, Y., Davis, J. C., Lupien, C., Yamada, I., Azuma, M., Takano, M., Ohishi, K., Ono, M. & Takagi, H. Quasiparticle interference and superconducting gap in Ca2–xNaxCuO2Cl2. Nature Physics 3, 865–871 (2007).

Saeko Okada | ResearchSEA
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Power and Electrical Engineering:

nachricht Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts
08.12.2016 | Institut für Solarenergieforschung GmbH

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>