Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UK electronics industry receives major EU funding boost

The European Commission has provided £750,000 funding to University of Glasgow researchers for three projects which could revolutionise the electronics industry.

The funding for the projects, DUALLOGIC, NANOSIL and REALITY, will support research aimed at creating a new generation of faster and bigger electronic chips that power all consumer electronics products.

Lead investigator of the Glasgow side of the projects, Professor Asen Asenov, said: “This funding is really important for the UK electronics industry which suffers from relatively low level of investment in semiconductor device and technology research. The European Commission recognises that University of Glasgow researchers are world-leaders in the area of chip development known as nano CMOS device modelling and novel device technology and design.

“The results of the projects will be particularly important for the vibrant and innovative UK design industry, which increasingly needs wider access to this kind of technology and device knowledge in order to remain competitive in an international market.

“10 years ago mobile phones were designed to make phone calls, now they are used for taking photos, listening to music and accessing the internet. Who knows what this research will bring us in the next 10 years?”

The projects will be run in collaboration with leading European manufacturers and research institutes. The funding was provided through the first call of proposals in the European Commission’s Seventh Framework Program (FP7) for collaborative European research in the area of Information and Communication Technologies.

DUALLOGIC, which was launched at the end of January, will investigate the possibilities of incorporating new channel materials into the production of chips that will make them faster and more powerful.

Previously researchers have used separately germanium and compound semiconductors in order to increase the performance of individual transistors, however, this project will, for the first time, investigate the possibilities of combining these two different channel materials in a single chip made on silicon substrate.

NANOSIL and REALITY will be launched later this year.

Martin Shannon | alfa
Further information:

More articles from Power and Electrical Engineering:

nachricht 'Super yeast' has the power to improve economics of biofuels
18.10.2016 | University of Wisconsin-Madison

nachricht Engineers reveal fabrication process for revolutionary transparent sensors
14.10.2016 | University of Wisconsin-Madison

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>