Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UK electronics industry receives major EU funding boost

12.02.2008
The European Commission has provided £750,000 funding to University of Glasgow researchers for three projects which could revolutionise the electronics industry.

The funding for the projects, DUALLOGIC, NANOSIL and REALITY, will support research aimed at creating a new generation of faster and bigger electronic chips that power all consumer electronics products.

Lead investigator of the Glasgow side of the projects, Professor Asen Asenov, said: “This funding is really important for the UK electronics industry which suffers from relatively low level of investment in semiconductor device and technology research. The European Commission recognises that University of Glasgow researchers are world-leaders in the area of chip development known as nano CMOS device modelling and novel device technology and design.

“The results of the projects will be particularly important for the vibrant and innovative UK design industry, which increasingly needs wider access to this kind of technology and device knowledge in order to remain competitive in an international market.

“10 years ago mobile phones were designed to make phone calls, now they are used for taking photos, listening to music and accessing the internet. Who knows what this research will bring us in the next 10 years?”

The projects will be run in collaboration with leading European manufacturers and research institutes. The funding was provided through the first call of proposals in the European Commission’s Seventh Framework Program (FP7) for collaborative European research in the area of Information and Communication Technologies.

DUALLOGIC, which was launched at the end of January, will investigate the possibilities of incorporating new channel materials into the production of chips that will make them faster and more powerful.

Previously researchers have used separately germanium and compound semiconductors in order to increase the performance of individual transistors, however, this project will, for the first time, investigate the possibilities of combining these two different channel materials in a single chip made on silicon substrate.

NANOSIL and REALITY will be launched later this year.

Martin Shannon | alfa
Further information:
http://www.gla.ac.uk/news/headline_65939_en.html

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>