Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


IMEC realized full CMOS multiple antenna receiver for 60 GHz

International Solid State Circuit Conference 2008 - San Francisco - California

At today’s IEEE International Solid State Circuit Conference, IMEC introduced its prototype of a 60GHz multiple antenna receiver, and invites industry to join its 60GHz research program.

The 60GHz band offers massive available bandwidth that enables very high bit rates of several Gbits-per-second at distances up to 10 meters (about 33 feet). To make the 60GHz technology cost-efficient to manufacture, low power and affordable in consumer products, IMEC has built its RF solution in a standard digital CMOS process thereby avoiding the extra cost of alternative technologies or dedicated RF process options.

The second industry goal is to overcome high path losses at mm-wave frequencies by using a phased antenna array approach. IMEC’s prototype uniquely addresses this problem by implementing a programmable phase shift of various incoming signals, which is necessary for beam-forming.

IMEC’s device contains two antenna paths, each consisting of a low-noise amplifier and a down-conversion mixer. The programmable phase shift is realized on the same chip. It starts from the quadrature signals of an on-chip quadrature voltage-controlled oscillator (QVCO). This QVCO design combines the highest oscillation frequency with the largest tuning range ever reported in CMOS.

IMEC’s multiple antenna receiver is the first step towards a complete CMOS-based phased array transceiver for 60GHz wireless personal area networks that envisage multi-gigabit-per-second applications such as fast kiosk downloading, wireless high-definition multimedia interface (HDMI), and other applications.

In the next phase of development, IMEC plans to implement four antenna paths using 45nm CMOS technology and to integrate other subsystems such as the phase-lock loop (PLL), analog-to-digital converter (ADC) and the patch-antenna array itself. IMEC will also begin initial experiments for a power amplifier.

These results were achieved in the unique multi-disciplinary 60GHz technology program. The research combines system-level aspects, algorithms, CMOS IC design, antenna design and module design, which target a low power 60 GHz communication link based on adaptive beamforming using multiple antennas aligned with ongoing standardization activities.

Katrien Marent | alfa
Further information:

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>