Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

IMEC realized full CMOS multiple antenna receiver for 60 GHz

07.02.2008
International Solid State Circuit Conference 2008 - San Francisco - California

At today’s IEEE International Solid State Circuit Conference, IMEC introduced its prototype of a 60GHz multiple antenna receiver, and invites industry to join its 60GHz research program.

The 60GHz band offers massive available bandwidth that enables very high bit rates of several Gbits-per-second at distances up to 10 meters (about 33 feet). To make the 60GHz technology cost-efficient to manufacture, low power and affordable in consumer products, IMEC has built its RF solution in a standard digital CMOS process thereby avoiding the extra cost of alternative technologies or dedicated RF process options.

The second industry goal is to overcome high path losses at mm-wave frequencies by using a phased antenna array approach. IMEC’s prototype uniquely addresses this problem by implementing a programmable phase shift of various incoming signals, which is necessary for beam-forming.

IMEC’s device contains two antenna paths, each consisting of a low-noise amplifier and a down-conversion mixer. The programmable phase shift is realized on the same chip. It starts from the quadrature signals of an on-chip quadrature voltage-controlled oscillator (QVCO). This QVCO design combines the highest oscillation frequency with the largest tuning range ever reported in CMOS.

IMEC’s multiple antenna receiver is the first step towards a complete CMOS-based phased array transceiver for 60GHz wireless personal area networks that envisage multi-gigabit-per-second applications such as fast kiosk downloading, wireless high-definition multimedia interface (HDMI), and other applications.

In the next phase of development, IMEC plans to implement four antenna paths using 45nm CMOS technology and to integrate other subsystems such as the phase-lock loop (PLL), analog-to-digital converter (ADC) and the patch-antenna array itself. IMEC will also begin initial experiments for a power amplifier.

These results were achieved in the unique multi-disciplinary 60GHz technology program. The research combines system-level aspects, algorithms, CMOS IC design, antenna design and module design, which target a low power 60 GHz communication link based on adaptive beamforming using multiple antennas aligned with ongoing standardization activities.

Katrien Marent | alfa
Further information:
http://www.imec.be/wwwinter/mediacenter/en/60GHz_2008.shtml

More articles from Power and Electrical Engineering:

nachricht ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records
16.01.2018 | Institut für Solarenergieforschung GmbH

nachricht A water-based, rechargeable battery
09.01.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

White graphene makes ceramics multifunctional

16.01.2018 | Materials Sciences

Breaking bad metals with neutrons

16.01.2018 | Materials Sciences

ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records

16.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>