Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

IMEC realized full CMOS multiple antenna receiver for 60 GHz

07.02.2008
International Solid State Circuit Conference 2008 - San Francisco - California

At today’s IEEE International Solid State Circuit Conference, IMEC introduced its prototype of a 60GHz multiple antenna receiver, and invites industry to join its 60GHz research program.

The 60GHz band offers massive available bandwidth that enables very high bit rates of several Gbits-per-second at distances up to 10 meters (about 33 feet). To make the 60GHz technology cost-efficient to manufacture, low power and affordable in consumer products, IMEC has built its RF solution in a standard digital CMOS process thereby avoiding the extra cost of alternative technologies or dedicated RF process options.

The second industry goal is to overcome high path losses at mm-wave frequencies by using a phased antenna array approach. IMEC’s prototype uniquely addresses this problem by implementing a programmable phase shift of various incoming signals, which is necessary for beam-forming.

IMEC’s device contains two antenna paths, each consisting of a low-noise amplifier and a down-conversion mixer. The programmable phase shift is realized on the same chip. It starts from the quadrature signals of an on-chip quadrature voltage-controlled oscillator (QVCO). This QVCO design combines the highest oscillation frequency with the largest tuning range ever reported in CMOS.

IMEC’s multiple antenna receiver is the first step towards a complete CMOS-based phased array transceiver for 60GHz wireless personal area networks that envisage multi-gigabit-per-second applications such as fast kiosk downloading, wireless high-definition multimedia interface (HDMI), and other applications.

In the next phase of development, IMEC plans to implement four antenna paths using 45nm CMOS technology and to integrate other subsystems such as the phase-lock loop (PLL), analog-to-digital converter (ADC) and the patch-antenna array itself. IMEC will also begin initial experiments for a power amplifier.

These results were achieved in the unique multi-disciplinary 60GHz technology program. The research combines system-level aspects, algorithms, CMOS IC design, antenna design and module design, which target a low power 60 GHz communication link based on adaptive beamforming using multiple antennas aligned with ongoing standardization activities.

Katrien Marent | alfa
Further information:
http://www.imec.be/wwwinter/mediacenter/en/60GHz_2008.shtml

More articles from Power and Electrical Engineering:

nachricht Producing electricity during flight
20.09.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Solar-to-fuel system recycles CO2 to make ethanol and ethylene
19.09.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>