Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIST building facility for hydrogen pipeline testing

25.01.2008
Efforts to create a “hydrogen economy” to reduce U.S. oil imports will get a boost from a new laboratory at the National Institute of Standards and Technology (NIST) that will evaluate tests, materials, mechanical properties and standards for hydrogen pipelines.

Construction is just beginning on the 750-square-foot laboratory on the site of a former hydrogen test facility at the NIST campus in Boulder, Colo. The laboratory—including a control room in a separate, existing building—is expected to be operational by mid-2008.

Widely used in industrial processing, hydrogen is attractive as a fuel because it burns cleanly without carbon emissions and can be derived from domestic sources. But long-term exposure to hydrogen can embrittle existing pipelines, increasing the potential for dangerous failures. NIST researchers will use the hydrogen laboratory to develop long-term service tests and apply them to study pipeline materials and mechanical effects. NIST is coordinating its research and safety plans with other national laboratories and industry groups working with hydrogen.

Experiments will involve immersing pipeline materials in pressurized hydrogen gas contained in steel alloy test chambers. The largest of these—about the size of a small automobile gas tank—will be the nation’s biggest hydrogen test chamber. Studies will be conducted using hydraulic machines to test mechanical fatigue, large frames for applying pressure to pipeline materials and equipment for testing properties such as tensile and residual strength and fracture toughness.

Tom Siewert, the NIST metallurgist who will manage the new laboratory, says the initial research will involve collecting fatigue and fracture data for existing pipelines as a baseline and conducting “round robin” exercises to assess the consistency of tests among various hydrogen laboratories. In the future, the focus will expand to new pipeline materials such as composites.

To help develop the research program, NIST recently held a workshop involving 46 participants representing pipeline owners, industry and standards organizations, academic researchers, national laboratories and government agencies. Working groups identified priority needs in materials; test techniques and methods; and codes, standards and safety.

Laura Ost | EurekAlert!
Further information:
http://www.nist.gov
http://www.nist.gov/hydrogen

More articles from Power and Electrical Engineering:

nachricht ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records
16.01.2018 | Institut für Solarenergieforschung GmbH

nachricht A water-based, rechargeable battery
09.01.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>