Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

IMEC speeds up scalable video decoder (SVC) with factor 20

15.01.2008
IMEC has further improved its source-code for standard-compliant Scalable Video Decoding (SVC = H.264 extension), now performing 20 times faster and using only a tenth of the memory footprint compared to the SVC standard reference code.

These groundbreaking results were obtained by further optimizing the code mainly through the removal of redundant code and function calls as well as through the improved memory use of IMEC’s earlier (mid 2007) SVC source code. This code was already two times faster than the reference code.

The first optimization was based on (re)structuring the SVC code into more concise functional blocks. This facilitated extra optimizations, including removing redundant code and function calls. The application of DTSE (Data Transfer and Storage Exploration) transformations enabled intelligent (re)use of the memory footprint. As a result of the increased data locality, the total memory footprint was significantly reduced to one tenth, leading to much better cache behavior and higher performance. This will also contribute to reducing the silicon cost area when using SVC functions for ASIC (application-specific integrated circuit) implementations.

The optimized decoder has been benchmarked against the reference decoder on a normal end user PC platform. Compliancy to the SVC standard was also verified. The configurations that were tested included the three scalability types of SVC, being spatial, temporal and quality scalability. The preliminary performance evaluation shows that IMEC’s decoder is up to 20 times faster than the reference software, while consuming only a tenth of the memory.

The optimized source code is available as starting point for product development by industry via a licensing program and can be delivered as source code. The code is of typical interest for system integrators of mobile devices or telecommunication applications and fabless IC makers to help them extend their multimedia reference platforms to comply with the SVC standard.

Katrien Marent | alfa
Further information:
http://www.imec.be

More articles from Power and Electrical Engineering:

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>