Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New superconductor cable will surpass all records in current intensity for the electricity network

08.01.2008
The SUPERCABLE project, jointly presented by the Institute of Material Science of Barcelona (ICMAB-CSIC), belonging to the Universitat Autònoma de Barcelona Research Park, the Universitat Autònoma de Barcelona Department of Physics and the company Nexans, received the NOVARE Prize in Energy Efficiency from the Spanish energy company ENDESA. The €500,000 prize will be invested in developing a superconductor cable, the first in the south of Europe and the most advanced in the world of its kind.

The main objective of this project is the construction of a 30m cable and the terminals needed to connect it to the network, which will be built with the high-temperature superconductor material BSCCO. This is the most advanced cable that exists in terms of distribution (20 kV), since its current value is higher than that obtained up to date, 3200 Amperes RMS, and therefore can transport the electrical strength of 110 MVA, i.e. five times more than a conventional copper cable of the same dimensions. Its construction is planned to be finished before the year 2010. Given that this will be the first superconductor system installed in our country, the SUPERCABLE project also will play a highly significant role in validating this new technology.

The project's framework includes the work of scientists developing new materials based on a second generation of superconductors, known as YBCO, which will be able to transport electricity up to 50 times the capacity of BSCCO cables and 100 times that of copper wires. Moreover, the loss in electricity of second-generation superconductors in comparison to BSCCO cables will be reduced tenfold.

The fact that superconductor technology transports a larger amount of electricity than conventional systems makes it a viable alternative to the efficiency needs of the world's electrical systems, which presently channel 40% of the world's total consumption of energy. Energy demands are expected to double by the second half of this century. Thus the construction of more efficient motors, generators, transformers and superconductor cables would help to satisfy this demand in energy, and at the same time reduce the emission of greenhouse gases.

In fact, transporting electricity with superconductor materials represents important benefits for the environment, since this will contribute to the global reduction of greenhouse gas emissions even if there is an increase in both the global population and the use of energy, especially in developing countries. The use of superconductor energy systems could easily reduce primary energy consumption by 10-15%, with no decrease in user consumption (final energy). This is due to the fact that 60% of the energy presently produced is wasted, which demonstrates that there is yet much to do to improve on energy efficiency. It must be taken into account that for each Gigawatt hour (GWh) of electrical energy saved, 160 tonnes of carbon oxide (COx) and one tonne of nitrogen oxide (NOx) are not emitted. Thus if Catalonia, with a yearly energy consumption of approximately 40,000 GWh, implemented the superconductor technology throughout the country, it could reduce its yearly emissions of carbon oxide by 500,000 tonnes.

The technology based on superconductor materials also increases the security and reliability of network installations, given that these transformers are non-flammable and current restrictions would be easier to apply, which allows for a greater control of the network. The fire generated by the transformers in Barcelona, for example, was precisely the origin of the greatest problem related to the power outage that occurred this past July.

The project is coordinated by Xavier Obradors, researcher at the Institute of Material Science of Barcelona, located at the UAB Research Park. Àlvar Sánchez, lecturer of the UAB Department of Physics, is the director of the UAB team of researchers and works in collaboration with ICREA researcher Du-Xing Chen. Both teams of researchers are working on new superconductor materials, projects that were recently approved by the Nanoselect programme from Ingenio 2010-Consolider, coordinated by ICMAB-CSIC. These research projects are the most significant response from the Spanish Government to the decades of underdevelopment in research in our country, and include the combined force of over sixty researchers with the objective of improving their competitiveness at international level.

The Novare Prizes by ENDESA were awarded first in 2005 and aim to promote different R&D&I activities in scientific areas related to technology and innovation strategies in businesses. The SUPERCABLE project was awarded the prize in "Energy Efficiency", while the other three prizes were awarded to projects from Italy, Chile and Seville. A total of forty proposals were sent from ten different countries.

Octavi López Coronado | alfa
Further information:
http://www.uab.es

More articles from Power and Electrical Engineering:

nachricht Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts
08.12.2016 | Institut für Solarenergieforschung GmbH

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

Oxygen can wake up dormant bacteria for antibiotic attacks

08.12.2016 | Health and Medicine

Newly discovered bacteria-binding protein in the intestine

08.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>