Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New superconductor cable will surpass all records in current intensity for the electricity network

08.01.2008
The SUPERCABLE project, jointly presented by the Institute of Material Science of Barcelona (ICMAB-CSIC), belonging to the Universitat Autònoma de Barcelona Research Park, the Universitat Autònoma de Barcelona Department of Physics and the company Nexans, received the NOVARE Prize in Energy Efficiency from the Spanish energy company ENDESA. The €500,000 prize will be invested in developing a superconductor cable, the first in the south of Europe and the most advanced in the world of its kind.

The main objective of this project is the construction of a 30m cable and the terminals needed to connect it to the network, which will be built with the high-temperature superconductor material BSCCO. This is the most advanced cable that exists in terms of distribution (20 kV), since its current value is higher than that obtained up to date, 3200 Amperes RMS, and therefore can transport the electrical strength of 110 MVA, i.e. five times more than a conventional copper cable of the same dimensions. Its construction is planned to be finished before the year 2010. Given that this will be the first superconductor system installed in our country, the SUPERCABLE project also will play a highly significant role in validating this new technology.

The project's framework includes the work of scientists developing new materials based on a second generation of superconductors, known as YBCO, which will be able to transport electricity up to 50 times the capacity of BSCCO cables and 100 times that of copper wires. Moreover, the loss in electricity of second-generation superconductors in comparison to BSCCO cables will be reduced tenfold.

The fact that superconductor technology transports a larger amount of electricity than conventional systems makes it a viable alternative to the efficiency needs of the world's electrical systems, which presently channel 40% of the world's total consumption of energy. Energy demands are expected to double by the second half of this century. Thus the construction of more efficient motors, generators, transformers and superconductor cables would help to satisfy this demand in energy, and at the same time reduce the emission of greenhouse gases.

In fact, transporting electricity with superconductor materials represents important benefits for the environment, since this will contribute to the global reduction of greenhouse gas emissions even if there is an increase in both the global population and the use of energy, especially in developing countries. The use of superconductor energy systems could easily reduce primary energy consumption by 10-15%, with no decrease in user consumption (final energy). This is due to the fact that 60% of the energy presently produced is wasted, which demonstrates that there is yet much to do to improve on energy efficiency. It must be taken into account that for each Gigawatt hour (GWh) of electrical energy saved, 160 tonnes of carbon oxide (COx) and one tonne of nitrogen oxide (NOx) are not emitted. Thus if Catalonia, with a yearly energy consumption of approximately 40,000 GWh, implemented the superconductor technology throughout the country, it could reduce its yearly emissions of carbon oxide by 500,000 tonnes.

The technology based on superconductor materials also increases the security and reliability of network installations, given that these transformers are non-flammable and current restrictions would be easier to apply, which allows for a greater control of the network. The fire generated by the transformers in Barcelona, for example, was precisely the origin of the greatest problem related to the power outage that occurred this past July.

The project is coordinated by Xavier Obradors, researcher at the Institute of Material Science of Barcelona, located at the UAB Research Park. Àlvar Sánchez, lecturer of the UAB Department of Physics, is the director of the UAB team of researchers and works in collaboration with ICREA researcher Du-Xing Chen. Both teams of researchers are working on new superconductor materials, projects that were recently approved by the Nanoselect programme from Ingenio 2010-Consolider, coordinated by ICMAB-CSIC. These research projects are the most significant response from the Spanish Government to the decades of underdevelopment in research in our country, and include the combined force of over sixty researchers with the objective of improving their competitiveness at international level.

The Novare Prizes by ENDESA were awarded first in 2005 and aim to promote different R&D&I activities in scientific areas related to technology and innovation strategies in businesses. The SUPERCABLE project was awarded the prize in "Energy Efficiency", while the other three prizes were awarded to projects from Italy, Chile and Seville. A total of forty proposals were sent from ten different countries.

Octavi López Coronado | alfa
Further information:
http://www.uab.es

More articles from Power and Electrical Engineering:

nachricht Failures in power grids: Dynamically induced cascades
25.05.2018 | Technische Universität Dresden

nachricht Beyond the limits of conventional electronics: stable organic molecular nanowires
24.05.2018 | Tokyo Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>