Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stanford's nanowire battery holds 10 times the charge of existing ones

20.12.2007
Stanford researchers have found a way to use silicon nanowires to reinvent the rechargeable lithium-ion batteries that power laptops, iPods, video cameras, cell phones, and countless other devices.

The new version, developed through research led by Yi Cui, assistant professor of materials science and engineering, produces 10 times the amount of electricity of existing lithium-ion, known as Li-ion, batteries. A laptop that now runs on battery for two hours could operate for 20 hours, a boon to ocean-hopping business travelers.

"It's not a small improvement," Cui said. "It's a revolutionary development."

The breakthrough is described in a paper, "High-performance lithium battery anodes using silicon nanowires," published online Dec. 16 in Nature Nanotechnology, written by Cui, his graduate chemistry student Candace Chan and five others.

The greatly expanded storage capacity could make Li-ion batteries attractive to electric car manufacturers. Cui suggested that they could also be used in homes or offices to store electricity generated by rooftop solar panels.

"Given the mature infrastructure behind silicon, this new technology can be pushed to real life quickly," Cui said.

The electrical storage capacity of a Li-ion battery is limited by how much lithium can be held in the battery's anode, which is typically made of carbon. Silicon has a much higher capacity than carbon, but also has a drawback.

Silicon placed in a battery swells as it absorbs positively charged lithium atoms during charging, then shrinks during use (i.e., when playing your iPod) as the lithium is drawn out of the silicon. This expand/shrink cycle typically causes the silicon (often in the form of particles or a thin film) to pulverize, degrading the performance of the battery.

Cui's battery gets around this problem with nanotechnology. The lithium is stored in a forest of tiny silicon nanowires, each with a diameter one-thousandth the thickness of a sheet of paper. The nanowires inflate four times their normal size as they soak up lithium. But, unlike other silicon shapes, they do not fracture.

Research on silicon in batteries began three decades ago. Chan explained: "The people kind of gave up on it because the capacity wasn't high enough and the cycle life wasn't good enough. And it was just because of the shape they were using. It was just too big, and they couldn't undergo the volume changes."

Then, along came silicon nanowires. "We just kind of put them together," Chan said.

For their experiments, Chan grew the nanowires on a stainless steel substrate, providing an excellent electrical connection. "It was a fantastic moment when Candace told me it was working," Cui said.

Cui said that a patent application has been filed. He is considering formation of a company or an agreement with a battery manufacturer. Manufacturing the nanowire batteries would require "one or two different steps, but the process can certainly be scaled up," he added. "It's a well understood process."

Also contributing to the paper in Nature Nanotechnology were Halin Peng and Robert A. Huggins of Materials Science and Engineering at Stanford, Gao Liu of Lawrence Berkeley National Laboratory, and Kevin McIlwrath and Xiao Feng Zhang of the electron microscope division of Hitachi High Technologies in Pleasanton, Calif.

Dan Stober | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Power and Electrical Engineering:

nachricht Fraunhofer ISE Supports Market Development of Solar Thermal Power Plants in the MENA Region
21.02.2018 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht New tech for commercial Lithium-ion batteries finds they can be charged 5 times fast
20.02.2018 | University of Warwick

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>