Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Move over, silicon: Advances pave way for powerful carbon-based electronics

20.12.2007
Practical technique shows promise of carbon material called graphene

Bypassing decades-old conventions in making computer chips, Princeton engineers developed a novel way to replace silicon with carbon on large surfaces, clearing the way for new generations of faster, more powerful cell phones, computers and other electronics.

The electronics industry has pushed the capabilities of silicon -- the material at the heart of all computer chips -- to its limit, and one intriguing replacement has been carbon, said Stephen Chou, professor of electrical engineering. A material called graphene -- a single layer of carbon atoms arranged in a honeycomb lattice -- could allow electronics to process information and produce radio transmissions 10 times better than silicon-based devices.

Until now, however, switching from silicon to carbon has not been possible because technologists believed they needed graphene material in the same form as the silicon used to make chips: a single crystal of material eight or 12-inches wide. The largest single-crystal graphene sheets made to date have been no wider than a couple millimeters, not big enough for a single chip. Chou and researchers in his lab realized that a big graphene wafer is not necessary, as long they could place small crystals of graphene only in the active areas of the chip. They developed a novel method to achieve this goal and demonstrated it by making high-performance working graphene transistors.

“Our approach is to completely abandon the classical methods that industry has been using for silicon integrated circuits,” Chou said.

Chou, along with graduate student Xiaogan Liang and materials engineer Zengli Fu, published their findings in the December 2007 issue of Nano Letters, a leading journal in the field. The research was funded in part by the Office of Naval Research.

In their new method, the researchers make a special stamp consisting of an array of tiny flat-topped pillars, each one-tenth of a millimeter wide. They press the pillars against a block of graphite (pure carbon), cutting thin carbon sheets, which stick to the pillars. The stamp is then removed, peeling away a few atomic layers of graphene. Finally, the stamp is aligned with and pressed against a larger wafer, leaving the patches of graphene precisely where transistors will be built.

The technique is like printing, Chou said. By repeating the process and using variously shaped stamps (the researchers also made strips instead of round pillars), all the active areas for transistors are covered with single crystals of graphene.

“Previously, scientists have been able to peel graphene sheets from graphite blocks, but they had no control over the size and location of the pieces when placing them on a surface,” Chou said.

One innovation that made the technique possible was to coat the stamp with a special material that sticks to carbon when it is cold and releases when it is warm, allowing the same stamp to pick up and release the graphene.

Chou’s lab took the next step and built transistors -- tiny on-off switches -- on their printed graphene crystals. Their transistors displayed high performance; they were more than 10 times faster than silicon transistors in moving "electronic holes" -- a key measure of speed.

The new technology could find almost immediate use in radio electronics, such as cell phones and other wireless devices that require high power output, Chou said. Depending on the level of interest from industry, the technique could be applied to wireless communication devices within a few years, Chou predicted.

“What we have done is shown that this approach is possible; the next step is to scale it up,” Chou said.

Steven Schultz | EurekAlert!
Further information:
http://www.princeton.edu

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Early organic carbon got deep burial in mantle

25.04.2017 | Earth Sciences

A room with a view - or how cultural differences matter in room size perception

25.04.2017 | Life Sciences

Warm winds: New insight into what weakens Antarctic ice shelves

25.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>