Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Move over, silicon: Advances pave way for powerful carbon-based electronics

Practical technique shows promise of carbon material called graphene

Bypassing decades-old conventions in making computer chips, Princeton engineers developed a novel way to replace silicon with carbon on large surfaces, clearing the way for new generations of faster, more powerful cell phones, computers and other electronics.

The electronics industry has pushed the capabilities of silicon -- the material at the heart of all computer chips -- to its limit, and one intriguing replacement has been carbon, said Stephen Chou, professor of electrical engineering. A material called graphene -- a single layer of carbon atoms arranged in a honeycomb lattice -- could allow electronics to process information and produce radio transmissions 10 times better than silicon-based devices.

Until now, however, switching from silicon to carbon has not been possible because technologists believed they needed graphene material in the same form as the silicon used to make chips: a single crystal of material eight or 12-inches wide. The largest single-crystal graphene sheets made to date have been no wider than a couple millimeters, not big enough for a single chip. Chou and researchers in his lab realized that a big graphene wafer is not necessary, as long they could place small crystals of graphene only in the active areas of the chip. They developed a novel method to achieve this goal and demonstrated it by making high-performance working graphene transistors.

“Our approach is to completely abandon the classical methods that industry has been using for silicon integrated circuits,” Chou said.

Chou, along with graduate student Xiaogan Liang and materials engineer Zengli Fu, published their findings in the December 2007 issue of Nano Letters, a leading journal in the field. The research was funded in part by the Office of Naval Research.

In their new method, the researchers make a special stamp consisting of an array of tiny flat-topped pillars, each one-tenth of a millimeter wide. They press the pillars against a block of graphite (pure carbon), cutting thin carbon sheets, which stick to the pillars. The stamp is then removed, peeling away a few atomic layers of graphene. Finally, the stamp is aligned with and pressed against a larger wafer, leaving the patches of graphene precisely where transistors will be built.

The technique is like printing, Chou said. By repeating the process and using variously shaped stamps (the researchers also made strips instead of round pillars), all the active areas for transistors are covered with single crystals of graphene.

“Previously, scientists have been able to peel graphene sheets from graphite blocks, but they had no control over the size and location of the pieces when placing them on a surface,” Chou said.

One innovation that made the technique possible was to coat the stamp with a special material that sticks to carbon when it is cold and releases when it is warm, allowing the same stamp to pick up and release the graphene.

Chou’s lab took the next step and built transistors -- tiny on-off switches -- on their printed graphene crystals. Their transistors displayed high performance; they were more than 10 times faster than silicon transistors in moving "electronic holes" -- a key measure of speed.

The new technology could find almost immediate use in radio electronics, such as cell phones and other wireless devices that require high power output, Chou said. Depending on the level of interest from industry, the technique could be applied to wireless communication devices within a few years, Chou predicted.

“What we have done is shown that this approach is possible; the next step is to scale it up,” Chou said.

Steven Schultz | EurekAlert!
Further information:

More articles from Power and Electrical Engineering:

nachricht Neutrons pave the way to accelerated production of lithium-ion cells
20.03.2018 | Technische Universität München

nachricht Monocrystalline silicon thin film for cost-cutting solar cells with 10-times faster growth rate fabricated
16.03.2018 | Tokyo Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>