Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rensselaer Researchers to Develop and Test Next-Generation Radar Systems

05.10.2009
Researchers at Rensselaer Polytechnic Institute have received a grant for $792,000 from the U.S. Air Force to create a new laboratory for developing and testing next-generation radar systems that overcome one of the key limitations of conventional radars.

The new test bed, led by Birsen Yazici, associate professor of electrical, computer, and systems engineering, will allow simulations of radar systems that are comprised of hundreds of miniature sensors communicating with ground sensors, unpiloted aerial vehicles, and satellites. Such a system could allow radars to be used in crowded cities and other urban environments.

“Conventional radar systems are designed for open spaces, and they do not work very well when used in urban environments with clutter from power lines, buildings, and dynamically changing elements like vehicles and people,” Yazici said. “Active distributed and layered sensing, which is what we are doing, offers a whole new paradigm that addresses these challenges. The new test bed will be a huge step toward making these theoretical systems a reality.”

The grant was awarded by the U.S. Air Force Office of Scientific Research. Margaret Cheney, professor of mathematics at Rensselaer, and Kenneth Connor, professor of electrical, computer, and systems engineering at Rensselaer, are co-investigators on the project.

Radar plays an important role in transportation, communications, and other applications because radio waves can pass through clouds, smoke, and other obstructions that often limit visibility, Yazici said. However, the usefulness of radar in cities and urban environments is quite limited due to their dynamically changing nature, as well as radio signal echoing. Just as echoes can make auditorium speakers difficult to understand, radar gets muddled when there are extra signals bouncing off different objects in an area.

Yazici and her colleagues have worked for some time to develop theoretical models in which conventional radar systems are replaced or augmented by many small, inexpensive radio frequency (RF) sensors that are stationary or deployed on air, space, or ground vehicles. These swarms of RF sensors communicate and share data and instructions in real-time, have access to established data networks and databases, and are programmed to autonomously adapt to changing environments and goals.

To simulate such a system, the new test bed will position antennas in a large cylindrical chamber. The antennas will transmit and receive test signals, resulting in an extensive collection of data that is equivalent to that obtained with hundreds of small RF sensors. The 25-foot diameter chamber will be situated in Rensselaer’s Watervliet research facility.

The capabilities of the test bed will include developing accurate and simple wave propagation models for complex environments; performing experiments with waveform, polarization, and 3-D spatial diversity and time-reversal methodology; as well as testing and evaluating new capabilities in opportunistic sensing, passive imaging, wide-aperture imaging, integrated sensing and processing, and moving target imaging.

Yazici said the new test bed will also promote the transfer and exchange of ideas and capabilities with federal laboratories, serve as a shared facility for Rensselaer and the Air Force Research Laboratory, and facilitate interdisciplinary and multi-university research in sensing, medical imaging, networking, robotics, advanced antennas, and control of stray RF energy from power systems. It will also be used for education, outreach, and training activities involving radar and other RF technologies.

For more information on the new the RF test bed visit: http://hibp.ecse.rpi.edu/~connor/RF/Tomography/Testbed.html

Michael Mullaney | Newswise Science News
Further information:
http://www.rpi.edu
http://hibp.ecse.rpi.edu/~connor/RF/Tomography/Testbed.html

More articles from Power and Electrical Engineering:

nachricht Improved stability of plastic light-emitting diodes
19.04.2018 | Max-Planck-Institut für Polymerforschung

nachricht Intelligent components for the power grid of the future
18.04.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Scientists re-create brain neurons to study obesity and personalize treatment

20.04.2018 | Health and Medicine

Spider silk key to new bone-fixing composite

20.04.2018 | Materials Sciences

Clear as mud: Desiccation cracks help reveal the shape of water on Mars

20.04.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>