Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rensselaer Researchers to Develop and Test Next-Generation Radar Systems

05.10.2009
Researchers at Rensselaer Polytechnic Institute have received a grant for $792,000 from the U.S. Air Force to create a new laboratory for developing and testing next-generation radar systems that overcome one of the key limitations of conventional radars.

The new test bed, led by Birsen Yazici, associate professor of electrical, computer, and systems engineering, will allow simulations of radar systems that are comprised of hundreds of miniature sensors communicating with ground sensors, unpiloted aerial vehicles, and satellites. Such a system could allow radars to be used in crowded cities and other urban environments.

“Conventional radar systems are designed for open spaces, and they do not work very well when used in urban environments with clutter from power lines, buildings, and dynamically changing elements like vehicles and people,” Yazici said. “Active distributed and layered sensing, which is what we are doing, offers a whole new paradigm that addresses these challenges. The new test bed will be a huge step toward making these theoretical systems a reality.”

The grant was awarded by the U.S. Air Force Office of Scientific Research. Margaret Cheney, professor of mathematics at Rensselaer, and Kenneth Connor, professor of electrical, computer, and systems engineering at Rensselaer, are co-investigators on the project.

Radar plays an important role in transportation, communications, and other applications because radio waves can pass through clouds, smoke, and other obstructions that often limit visibility, Yazici said. However, the usefulness of radar in cities and urban environments is quite limited due to their dynamically changing nature, as well as radio signal echoing. Just as echoes can make auditorium speakers difficult to understand, radar gets muddled when there are extra signals bouncing off different objects in an area.

Yazici and her colleagues have worked for some time to develop theoretical models in which conventional radar systems are replaced or augmented by many small, inexpensive radio frequency (RF) sensors that are stationary or deployed on air, space, or ground vehicles. These swarms of RF sensors communicate and share data and instructions in real-time, have access to established data networks and databases, and are programmed to autonomously adapt to changing environments and goals.

To simulate such a system, the new test bed will position antennas in a large cylindrical chamber. The antennas will transmit and receive test signals, resulting in an extensive collection of data that is equivalent to that obtained with hundreds of small RF sensors. The 25-foot diameter chamber will be situated in Rensselaer’s Watervliet research facility.

The capabilities of the test bed will include developing accurate and simple wave propagation models for complex environments; performing experiments with waveform, polarization, and 3-D spatial diversity and time-reversal methodology; as well as testing and evaluating new capabilities in opportunistic sensing, passive imaging, wide-aperture imaging, integrated sensing and processing, and moving target imaging.

Yazici said the new test bed will also promote the transfer and exchange of ideas and capabilities with federal laboratories, serve as a shared facility for Rensselaer and the Air Force Research Laboratory, and facilitate interdisciplinary and multi-university research in sensing, medical imaging, networking, robotics, advanced antennas, and control of stray RF energy from power systems. It will also be used for education, outreach, and training activities involving radar and other RF technologies.

For more information on the new the RF test bed visit: http://hibp.ecse.rpi.edu/~connor/RF/Tomography/Testbed.html

Michael Mullaney | Newswise Science News
Further information:
http://www.rpi.edu
http://hibp.ecse.rpi.edu/~connor/RF/Tomography/Testbed.html

More articles from Power and Electrical Engineering:

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

nachricht Engineers find better way to detect nanoparticles
14.08.2017 | Washington University in St. Louis

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>