Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More reliable forecasts for water flows can reduce price of electricity

19.01.2010
Brazil, Canada, China, the US, Russia, Norway, Japan, and Sweden are among the largest producers of hydroelectric power in the world.

One problem for hydroelectric power companies is that the great variations in the river flow and the lack of long-term forecasts make it difficult for power companies to determine how much water in their dams should be saved or released.

But by scaling down information from global climate models and combining it with local measurement data, researchers at the Lund University School of Engineering (LTH) have developed a method that yields four-month forecasts that are twice as reliable as similar methods for run-off forecasts. The findings are published in the coming issue of Hydrology Research, and the model will be tested by StatKraft in Norway.

In Scandinavia, dry and cold winters entail heating needs in general, as well as a risk that the levels of hydropower reservoirs are low by springtime as a result of high electricity consumption. If the melted snow is not sufficient to fill the dams, this can lead to drastically elevated electricity prices later in the year.

The power companies' need for long-term forecasting is often greatest now during the winter, even though there is also need for a somewhat earlier indication of coming water resources throughout the year.

"By predicting spring water resources as early as December-January, it is possible to steer electricity production so that water reservoirs are emptied more slowly, thus avoiding dramatic price hikes in subsequent seasons. The need to control water flows is all the greater because the value of water in the dams varies apace with the price of electricity," says Cintia Bertacchi Uvo, professor of water resources engineering at LTH.

Today there is no reliable way of knowing well in advance how much water will be available in Swedish and Norwegian rivers, and thereby in water reservoirs, following the spring snow melt.

The climate phenomena that are correlated in the computer-based model are natural variations in the powerful and constant low and high pressure systems that are found over the North Atlantic (North Atlantic Oscillation, NAO) and that are already known to be of great importance in determining whether the Scandinavian winter will be mild and rainy or dry and cold, which it has been in December and January. The model, that Lund scientists have developed in collaborations with South African researchers from the University of Pretoria and the South African Weather Service, also takes account of data on temperatures and on wind direction and strength, from which it is possible to estimate how much snow should accumulate during winter.

"The only thing needed to apply the method locally is to fill in historical data, as far back as possible, about water flows from the river that feeds the power station," explains Kean Foster, who holds a master's degree in water resources engineering. "It is possible to apply the method in different countries with varying time conditions depending on the country's climate."

The scientists have shown that it is possible to apply global climate models locally by correlating historical data over a fifty-year period from different global climate models with data on water volumes per second in Scandinavian rivers, such as the Torne River in the north, from the same period. To achieve good results, it is important to use multiple climate models simultaneously and to combine the results.

Today power companies use relatively accurate short-term run-off forecasts that are based on a combination of hydrological models and weather forecasts. But their long-term forecasts are less reliable. Their long-term run-off forecasts are calculated by running the hydrological models with two weather scenarios, one that yields low run-off and one that yields high run-off, which provides two extremes that the long-term planning can be based on.

"The problem with this method is that the run-off can wind up anywhere at all within this interval. A climate forecast like the one we have devised provides better probability for future run-off scenarios, which makes it possible to plan and prioritize different strategies," explains Kean Foster.

"A concrete example that illustrates the need for forecasts occurred in the spring of 2003, when energy prices in Sweden more than tripled in a short time. The reason was that precipitation that normally comes in the autumn had not materialized. If the hydroelectric power stations had had access to relevant climate forecasts during the summer and autumn, they would not have emptied the water reservoirs prematurely, which is what happened," concludes Cintia Bertacchi Uvo, professor of water resources engineering at the Lund University School of Engineering and the researcher who initiated the project.

For more information, please contact Cintia Bertacchi Uvo, professor, Water Resources Engineering, phone: +46 (0)46-222 04 35, Cintia.Bertacchi_Uvo@tvrl.lth.se and Kean Foster, w04knf@student.lth.se, mobile phone: +46 (0)73-644 07 10

Pressofficer: Kristina Lindgärde; +46-709 753 500; kristina.lindgarde@kansli.lth.se

Kristina Lindgärde | idw
Further information:
http://www.vr.se

More articles from Power and Electrical Engineering:

nachricht Six-legged robots faster than nature-inspired gait
17.02.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Did you know that IR heat plays a central role in the production of chocolates?
14.02.2017 | Heraeus Noblelight GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>