Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Relativity shakes a magnet

03.03.2014

Researchers from Johannes Gutenberg University Mainz demonstrate a new principle for magnetic recording / Publication in Nature Nanotechnology

The research group of Professor Jairo Sinova at the Institute of Physics at Johannes Gutenberg University Mainz (JGU), in collaboration with researchers from Prague, Cambridge, and Nottingham, have predicted and discovered a new physical phenomenon that allows to manipulate the state of a magnet by electric signals. Current technologies for writing, storing, and reading information are either charge-based or spin-based.


Electrically shaken GaMnAs magnet

(source/©: Jairo Sinova)

Semiconductor flash or random access memories are prime examples among the large variety of charge-based devices. They utilize the possibility offered by semiconductors to easily electrically manipulate and detect their electronic charge states representing the "zeros" and "ones". The downside is that weak perturbations such as impurities, temperature change, or radiation can lead to uncontrolled charge redistributions and, as a consequence, to data loss. Spin-based devices operate on an entirely distinct principle.

In some materials, like iron, electron spins generate magnetism and the position of the north and south pole of the magnet can be used to store the zeros and ones. This technology is behind memory applications ranging from kilobyte magnetic stripe cards to terabyte computer hard disks. Since they are based on spin, the devices are much more robust against charge perturbations. However, the drawback of current magnetic memories is that in order to reverse the north and south poles of the magnet, i.e., flip the zero to one or vice versa, the magnetic bit has to be coupled to an electro-magnet or to another permanent magnet. If instead one could flip the poles by an electric signal without involving another magnet, a new generation of memories can be envisaged combining the merits of both charge and spin-based devices.

In order the shake a magnet electrically without involving an electro-magnet or another permanent magnet one has to step out of the realm of classical physics and enter the relativistic quantum mechanics. Einstein’s relativity allows electrons subject to electric current to order their spins so they become magnetic. The researchers took a permanent magnet GaMnAs and by applying an electric current inside the permanent magnet they created a new internal magnetic cloud, which was able to manipulate the surrounding permanent magnet. The work has been published in the journal Nature Nanotechnology on 2 March 2014.

The observed phenomenon is closely related to the relativistic intrinsic spin Hall effect which Jörg Wunderlich, Jairo Sinova, and Tomas Jungwirth discovered in 2004 following a prediction of Sinova and co-workers in 2003. Since then it has become a text-book demonstration of how electric currents can magnetize any material. "Ten years ago we predicted and discovered how electric currents can generate pure spin-currents through the intrinsic structure of materials. Now we have shown how this effect can be reversed to manipulate magnets by the current-induced polarization.

These new phenomena are a major topic of research today since they can lead to new generation of memory devices. Besides our on-going collaborations, this research direction couples very well with on-going experimental research here in Mainz. Being part of this world-leading research and working with superb colleagues is an immense privilege and I am very excited about the future", says Professor Jairo Sinova.

Publication:
Kurebayashi, H., Sinova, J. et al.
An antidumping spin–orbit torque originating from the Berry curvature
Nature Nanotechnology, 2 March 2014
DOI: 10.1038/nnano.2014.15

Figure:
http://www.uni-mainz.de/bilder_presse/08_physik_GaMnAs_magnet.jpg
Electrically shaken GaMnAs magnet
(source/©: Jairo Sinova)

Further information:
Professor Dr. Jairo Sinova
Institute of Physics
Johannes Gutenberg University Mainz (JGU)
D 55099 Mainz, GERMANY
phone +49 6131 39-21284
e-mail: sinova@uni-mainz.de
www.sinova-group.physik.uni-mainz.de/

Weitere Informationen:

http://dx.doi.org/10.1038/nnano.2014.15 - Article in NATURE NANOTECHNOLOGY ;
http://www.uni-mainz.de/presse/17107_ENG_HTML.php - press release ;
http://www.sinova-group.physik.uni-mainz.de/ - Sinova Group at the JGU Institute of Physics

Petra Giegerich | idw - Informationsdienst Wissenschaft

Further reports about: GaMnAs magnet JGU Nanotechnology Physics Relativity Sinova perturbations phenomenon

More articles from Power and Electrical Engineering:

nachricht Open, flexible assembly platform for optical systems
23.01.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>