Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Record performance of dual-gate organic TFT-based RFID circuit

09.02.2010
At today’s International Solid State Circuit Conference (ISSCC), Holst Centre, imec and TNO present a dual-gate-based organic RFID chip with record data rate and lowest reported operating voltage. For the first time, the advantages of dual gate transistors in circuit speed and robustness have thereby been exploited in a complex organic-electronic circuit.

Organic RFID tags are one of the drivers of flexible electronics research and development. Over the previous years, Holst Centre, imec and TNO, have been successful in reporting state-of-the art results on major conferences, such as ISSCC and IEDM. The current result of a 64-bit transponder circuit at 4.3kb/s shows an improvement of over a factor two compared to the result reported last year at ISSCC. What’s more, results show that chips start to operate at lower voltages (down to 10V), making them more suitable for capacitive and inductive coupling with a readout station.

Main reason behind the increased performance is the use of a dual gate unipolar transistor technology, adapted from rollable-display company Polymer Vision, one of the partners in the Holst Centre research programs. Using a dual gate allows controlling the threshold voltage (Vt) and the thus obtained multiple-Vt technology leads to more robust circuits.

Dual-gate organic TFT (thin-film transistor) circuits have been reported before, but had never surpassed the complexity of basic inverters. Thanks to the tight collaboration within mixed teams of circuit designers and technology developers, Holst Centre, imec and TNO now report 99-stage dual-gate ring oscillators in various topologies, plus 64-bit RFID transponder chips using the same architecture.

Further and ongoing work will demonstrate the viability of the technology towards industrial uptake. Holst Centre therefore gathers leading industrial players from across the value chain around its shared research roadmaps. The work is the result of a close collaboration between TNO and imec teams in Eindhoven and Leuven.

Katrien Marent | alfa
Further information:
http://www.imec.be
http://www2.imec.be/be_en/press/imec-news/organicrfid.html

More articles from Power and Electrical Engineering:

nachricht Failures in power grids: Dynamically induced cascades
25.05.2018 | Technische Universität Dresden

nachricht Beyond the limits of conventional electronics: stable organic molecular nanowires
24.05.2018 | Tokyo Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>