Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Record performance of dual-gate organic TFT-based RFID circuit

09.02.2010
At today’s International Solid State Circuit Conference (ISSCC), Holst Centre, imec and TNO present a dual-gate-based organic RFID chip with record data rate and lowest reported operating voltage. For the first time, the advantages of dual gate transistors in circuit speed and robustness have thereby been exploited in a complex organic-electronic circuit.

Organic RFID tags are one of the drivers of flexible electronics research and development. Over the previous years, Holst Centre, imec and TNO, have been successful in reporting state-of-the art results on major conferences, such as ISSCC and IEDM. The current result of a 64-bit transponder circuit at 4.3kb/s shows an improvement of over a factor two compared to the result reported last year at ISSCC. What’s more, results show that chips start to operate at lower voltages (down to 10V), making them more suitable for capacitive and inductive coupling with a readout station.

Main reason behind the increased performance is the use of a dual gate unipolar transistor technology, adapted from rollable-display company Polymer Vision, one of the partners in the Holst Centre research programs. Using a dual gate allows controlling the threshold voltage (Vt) and the thus obtained multiple-Vt technology leads to more robust circuits.

Dual-gate organic TFT (thin-film transistor) circuits have been reported before, but had never surpassed the complexity of basic inverters. Thanks to the tight collaboration within mixed teams of circuit designers and technology developers, Holst Centre, imec and TNO now report 99-stage dual-gate ring oscillators in various topologies, plus 64-bit RFID transponder chips using the same architecture.

Further and ongoing work will demonstrate the viability of the technology towards industrial uptake. Holst Centre therefore gathers leading industrial players from across the value chain around its shared research roadmaps. The work is the result of a close collaboration between TNO and imec teams in Eindhoven and Leuven.

Katrien Marent | alfa
Further information:
http://www.imec.be
http://www2.imec.be/be_en/press/imec-news/organicrfid.html

More articles from Power and Electrical Engineering:

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

nachricht Engineers find better way to detect nanoparticles
14.08.2017 | Washington University in St. Louis

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>