Real-time energy audit reduces power consumption

Governments are pressuring industries to reduce energy consumption for both environmental and economic reasons. Optimizing factory processes and improving equipment can lower energy usage but this not only takes time and money, it also requires a vast amount of background operational knowledge.

Now, Oon Peen Gan and co-workers at A*STAR’s Singapore Institute of Manufacturing Technology, together with researchers at the National University of Singapore and The University of Texas, United States, have developed an approach to track the daily energy usage of individual machines. Their approach monitors the operational state of a machine in real time1.

“Our proposed idea improves energy efficiency through better sequence control of machines and operations,” notes Gan. “It can be as simple as switching off a light when not in use.”

To test their idea, Gan and his team identified the operational state of two individual industrial molding machines, based on their energy consumption. The researchers placed sensors inside the machines and fed the data from the sensors into a mathematical model called a finite-state machine (FSM), which is commonly used for analyzing manufacturing processes. Since a machine in the ‘start-up’ state has a different energy output to one in full production, the FSM could be used to produce power-consumption profiles of the machines.

The researchers then used a unique two-stage framework to help them analyze and classify the data. “During the first stage we cleaned the raw energy signals using a digital filter to produce a much smoother dataset with less noise,” explains Gan. “Secondly, we trained a pattern-recognition algorithm, or neural network, to classify the data into separate events. Each event represents a machine operation state.”

Using the model, Gan and co-workers determined the exact operational state of each molding machine in real time. Because the researchers could easily find abnormal energy patterns in the model output, the software tool may prove very useful for engineers looking for machine faults across the factory floor.

With the trained neural network in place, a software user can classify any machine’s operational state from its energy output without needing to know the machine type. Theoretically, the model could be used to monitor many different types of machines in any industry.

“We hope to incorporate our new model into existing software that is used by manufacturers to monitor their shop floors,” says Gan. “We aim to validate the model with experiments at a number of industrial companies in Singapore in the near future.”

The A*STAR-affiliated researchers contributing to this research are from the Singapore Institute of Manufacturing Technology

Journal information

Le, C. V., Pang, C. K., Gan, O. P., Chee, X. M., Zhang, D. H. et al. Classification of energy consumption patterns for energy audit and machine scheduling in industrial manufacturing systems. Transactions of the Institute of Measurement and Control 35, 583–592 (2013).

Media Contact

A*STAR Research Research asia research news

All latest news from the category: Power and Electrical Engineering

This topic covers issues related to energy generation, conversion, transportation and consumption and how the industry is addressing the challenge of energy efficiency in general.

innovations-report provides in-depth and informative reports and articles on subjects ranging from wind energy, fuel cell technology, solar energy, geothermal energy, petroleum, gas, nuclear engineering, alternative energy and energy efficiency to fusion, hydrogen and superconductor technologies.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors