Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rain Or Shine, Researchers Find New Ways to Forecast Large Photovoltaic Power Plant Output

30.09.2010
Sandia National Laboratories researchers have developed a new system to monitor how clouds affect large-scale solar photovoltaic (PV) power plants.

By observing cloud shape, size and movement, the system provides a way for utility companies to predict and prepare for fluctuations in power output due to changes in weather. The resulting models will provide utility companies with valuable data to assess potential power plant locations, ramp rates and power output.

Sandia researchers’ work is currently focused at the 1.2-megawatt La Ola Solar Farm on the Hawaiian island of Lana’i. La Ola is the state’s largest solar power system, and can produce enough power to supply up to 30 percent of the island’s peak electric demand, which is one of the highest rates of solar PV power penetration in the world. Understanding variability of such a large plant is critical to ensuring that power output is reliable and that output ramp rates remain manageable.

“As solar power continues to develop and take up a larger percentage of grids nationwide, being able to forecast power production is going to become more and more critical,” said Chris Lovvorn, director of alternative energy of Castle & Cooke Resorts, LLC, which owns 98 percent of the island. “Sandia’s involvement and insight has been invaluable in our efforts to meet 100 percent of the island’s energy needs with renewable resources.”

The effects of clouds on small PV arrays are well-documented, but there is little research on how large-scale arrays interact and function under cloud cover. A small system can be completely covered by a cloud, which drastically reduces its power output, but what’s less well understood is what happens when only part of a large system is covered by a moving cloud shadow, while the rest stays in sunlight.

“Our goal is to get to the point where we can predict what’s going to happen at larger scale plants as they go toward hundreds of megawatts. To do that, you need the data, and the opportunity was available at La Ola,” said Sandia researcher Scott Kuszmaul.

The high penetration of PV power on Lana’i, combined with the sun and cloud mix at the 10-acre La Ola plant, provides an optimal environment for prediction and modeling research. Research could not interfere with the ongoing operations of the plant, which currently sells power to Maui Electric Company (MECO), so Sandia engineers connected 24 small, nonintrusive sensors to the plant’s PV panels and used a radio frequency network to transmit data. The sensors took readings at one-second intervals to provide researchers with unprecedented detail about cloud direction and coverage activity.

A radio frequency transmission system has the added benefit of being portable. “Currently, a utility company that wants to build a large solar PV power plant might have a lot of questions about the plant’s output and variability at a proposed site. Work being done at the La Ola plant is leading to new methods that eventually can be used to answer these questions,” said Sandia researcher Josh Stein. “These techniques will allow a developer to place a sensor network at a proposed site, make measurements for a period of time and use that to predict plant output variability.”

La Ola was commissioned in December 2008 by Castle & Cooke Resorts, LLC, and SunPower Corp., a manufacturer of high-efficiency solar cells. The project uses SunPower’s Tracker technology. Panels rotate on a single axis to follow the sun, which increases energy capture by up to 25 percent. Since February, Sandia Labs has held a cooperative research and development agreement (CRADA) with SunPower to conduct research on integrating large-scale PV systems into the grid. The CRADA is funded with about $1 million of combined U.S. Department of Energy and SunPower funding and is expected to achieve significant results, which will be disseminated through joint publications over the next two years.

For more information about Sandia’s photovoltaic work, please visit: www.sandia.gov/pv.

Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.

Sandia news media contact: Stephanie Hobby, shobby@sandia.gov, (505) 844-0948

Stephanie Hobby | Newswise Science News
Further information:
http://www.sandia.gov

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>