Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rain Or Shine, Researchers Find New Ways to Forecast Large Photovoltaic Power Plant Output

30.09.2010
Sandia National Laboratories researchers have developed a new system to monitor how clouds affect large-scale solar photovoltaic (PV) power plants.

By observing cloud shape, size and movement, the system provides a way for utility companies to predict and prepare for fluctuations in power output due to changes in weather. The resulting models will provide utility companies with valuable data to assess potential power plant locations, ramp rates and power output.

Sandia researchers’ work is currently focused at the 1.2-megawatt La Ola Solar Farm on the Hawaiian island of Lana’i. La Ola is the state’s largest solar power system, and can produce enough power to supply up to 30 percent of the island’s peak electric demand, which is one of the highest rates of solar PV power penetration in the world. Understanding variability of such a large plant is critical to ensuring that power output is reliable and that output ramp rates remain manageable.

“As solar power continues to develop and take up a larger percentage of grids nationwide, being able to forecast power production is going to become more and more critical,” said Chris Lovvorn, director of alternative energy of Castle & Cooke Resorts, LLC, which owns 98 percent of the island. “Sandia’s involvement and insight has been invaluable in our efforts to meet 100 percent of the island’s energy needs with renewable resources.”

The effects of clouds on small PV arrays are well-documented, but there is little research on how large-scale arrays interact and function under cloud cover. A small system can be completely covered by a cloud, which drastically reduces its power output, but what’s less well understood is what happens when only part of a large system is covered by a moving cloud shadow, while the rest stays in sunlight.

“Our goal is to get to the point where we can predict what’s going to happen at larger scale plants as they go toward hundreds of megawatts. To do that, you need the data, and the opportunity was available at La Ola,” said Sandia researcher Scott Kuszmaul.

The high penetration of PV power on Lana’i, combined with the sun and cloud mix at the 10-acre La Ola plant, provides an optimal environment for prediction and modeling research. Research could not interfere with the ongoing operations of the plant, which currently sells power to Maui Electric Company (MECO), so Sandia engineers connected 24 small, nonintrusive sensors to the plant’s PV panels and used a radio frequency network to transmit data. The sensors took readings at one-second intervals to provide researchers with unprecedented detail about cloud direction and coverage activity.

A radio frequency transmission system has the added benefit of being portable. “Currently, a utility company that wants to build a large solar PV power plant might have a lot of questions about the plant’s output and variability at a proposed site. Work being done at the La Ola plant is leading to new methods that eventually can be used to answer these questions,” said Sandia researcher Josh Stein. “These techniques will allow a developer to place a sensor network at a proposed site, make measurements for a period of time and use that to predict plant output variability.”

La Ola was commissioned in December 2008 by Castle & Cooke Resorts, LLC, and SunPower Corp., a manufacturer of high-efficiency solar cells. The project uses SunPower’s Tracker technology. Panels rotate on a single axis to follow the sun, which increases energy capture by up to 25 percent. Since February, Sandia Labs has held a cooperative research and development agreement (CRADA) with SunPower to conduct research on integrating large-scale PV systems into the grid. The CRADA is funded with about $1 million of combined U.S. Department of Energy and SunPower funding and is expected to achieve significant results, which will be disseminated through joint publications over the next two years.

For more information about Sandia’s photovoltaic work, please visit: www.sandia.gov/pv.

Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.

Sandia news media contact: Stephanie Hobby, shobby@sandia.gov, (505) 844-0948

Stephanie Hobby | Newswise Science News
Further information:
http://www.sandia.gov

More articles from Power and Electrical Engineering:

nachricht Waste from paper and pulp industry supplies raw material for development of new redox flow batteries
12.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Low-cost battery from waste graphite
11.10.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>