Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The race is on for new lithium ion batteries

27.03.2009
Battery consortium headed by BASF receives € 21 million sponsorship from German Ministry of Education and Research
New generations of high-energy batteries for tomorrow's propulsion technology
Financial sponsorship running into millions has opened the way for the development of new generations of high energy batteries for use in plug-in hybrid automobiles and the electric powered vehicles of the future.

Under the guidance of BASF Future Business GmbH, eighteen partners from industry and science have combined into the cross-sector consortium "HE-Lion" to develop and bring to market efficient, higher-performing and safer lithium ion batteries over the next four to six years. The German Ministry of Education and Research (BMBF) is funding the HE-Lion project with €21 million as part of the "Lithium Ion Battery LIB 2015" alliance for innovation. The partners in the consortium will be contributing the same amount directly from their own financial resources.

"This alliance is an essential contribution to strengthening Germany as a heartland of innovation. In research, we must make the decisive breakthrough with new battery materials as soon as possible. Only then can we make electromobility affordable and free it from its niche existence," emphasizes Dr. Andreas Kreimeyer, Member of the Board of Executive Directors of BASF and Research Executive Director.

The BMBF initiative LIB 2015 with a total sponsorship volume of €60 million for several consortia aims to bring to market by 2015 higher performing, safer and above all affordable lithium ion batteries for future propulsion systems such as plug-in hybrid automobiles. A plug-in hybrid is a powered vehicle with a hybrid propulsion system with a battery that can also be charged externally from the mains supply. Equipped with an internal combustion engine, electrical drive system and a battery, it can be driven both with gasoline and electricity.

With companies of the chemical industry, battery industry, the automotive and energy sector and numerous partners from universities and institutes, HE-Lion is the largest consortium in LIB 2015. As energy stores of the future, lithium ion batteries are a key technology for a climate friendly energy supply. For BASF, climate protection is a long-term strategic issue to which its commitment in this project is also contributing.

While the existing first and second generation of lithium ion batteries are already being used in laptops, smartphones or cameras, a newer and more stable system has to be developed for the third and fourth generations. Key factors for the success of the new batteries are high safety, high effectiveness and an affordable price. The aim is to achieve two to five times more energy density compared to previous battery systems. This will ensure that plug-in hybrids and electrically powered vehicles can reach acceptable driving ranges. Based on existing series production models, in future they should only need to recharge after 200 kilometers instead of 50 km at present.

This will mean having to improve mainly the cathode of the battery. BASF experts are developing a portfolio of innovative cathode materials, special metal oxides, that are produced by high-temperature synthesis. These activities include the conceptual design of the materials, laboratory synthesis and scale-up, i.e. transfer to the production scale. At present the materials still account for more than 50 percent of the cost of lithium ion batteries.

"With representatives of all technological disciplines, we now have the opportunity to reinvent the battery in the truest sense of the word. With a globally competitive technology, our partners will be positioning themselves as leading worldwide suppliers of materials, components, cells and batteries," says Dr. Thomas Weber, Managing Director of BASF Future Business GmbH. Until the innovative battery can be tested in a VW Golf in a few years from now, however, the inventors will have to carry out more than 10,000 different tests. By today's standards, a lithium ion battery for a Golf would be as expensive as the vehicle itself. Modern production processes are needed to assure high quality and environmentally friendly manufacture and to significantly reduce costs. To achieve these goals, materials research experts are needed as much as system developers.

The industrial consortium covers a broad range of activities extending from material research to system integration. BASF, Freudenberg Vliesstoffe and SGL Carbon are responsible for material manufacture. Prototype development and cell technology are provided by Fraunhofer Institute Itzehoe and the companies Gaia, Leclanché and Bosch. Implementation in the vehicle is being undertaken by Volkswagen, and the EnBW energy company will develop models for integrating the high-energy batteries into a new power supply concept for load balancing. In fundamental research, cooperative projects are ongoing with the universities of Berlin, Bonn, Clausthal, Darmstadt, Giessen, Hannover, Münster, the Paul-Scherrer Institute in Switzerland and the Leibniz Institute of Dresden. The consortium partners see their competitive advantage in the unique constellation of this venture.

Christian Böhme | idw
Further information:
http://www.basf.com
http://basf.com/group/pressrelease/P-09-158

More articles from Power and Electrical Engineering:

nachricht Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts
08.12.2016 | Institut für Solarenergieforschung GmbH

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>