Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

"Green" OLED-Displays - High Image Quality at Low Energy

14.10.2009
Chihao Xu, professor for microelectronics at Saarland-University, has achieved a breakthrough in power-efficient driving of OLED-displays.

They are regarded as displays of the future - organic light emitting diode-displays - called OLED-displays in short. This technology is already applied in mobile phones, MP3-players and digital cameras.

It is based on the phenomenon that certain organic materials emit light, when fed by an electric current. The new OLED-displays can be thin as a film and just as flexible. Furthermore they have a wide viewing angle and display videos perfectly. A further benefit is that these displays need little energy.

"Compared to the present standard, more than the half of the energy can be saved for the OLED-display-operation", Chihao Xu stated. "Especially for mobile applications, saving of energy is reasonable" explains the professor. The display consumes most of the energy in mobile devices such as the mobile phone. Especially by charging and discharging a lot of energy gets lost". The scientists from Saarbrücken are searching for avoiding this high power loss.

This shall be achieved by the new driving scheme SQC (State dependent Charge controlled Driving) for actuating passive matrix OLED-displays. This scheme will substantially reduce the power consumption especially for high resolution displays, and will naturally guarantee the known excellent image quality of an OLED-display.

The microelectronics group of Saarland University is worldwide leading in the field of the OLED-driving. Within the CARO-project (CAR OLED) Chihao Xu and his team together with partners from science and industry, such as Optrex Europe GmbH and the Fraunhofer Institute for Photonic Microsystems (PIMS), participated in the development of a new driver chip, which shall be implemented in OLED-displays for cars. In this project, a new multi-line addressing scheme ("SELA", Summed Equi-Line-Addressing) is used. This method significantly increases the lifetime of OLEDs and makes them more attractive for high performance applications.

"OLEDs have many advantages, particularly in cars. The displays react immediately also at very low temperatures. Besides, dark pixels are really black and differ only slightly from the surroundings in the cockpit. This leads to an appearance more beautiful and more splendid", explains Chihao Xu. The driver chip from the CARO-project, realized by the Fraunhofer IPMS, is designed in such a versatile manner that also SQC can be implemented.

"Also with regard to cars, saving of energy is an important matter" says professor Xu. "Therefore it is consequent to research on the combination of this power-efficient driving scheme and the Summed-Equi-Line-Addressing and to develop a marketable demonstrator".

Now, the microelectronics group of Saarbrücken will together with Optrex Europe GmbH and further partners continue to push on the efficient control of passive matrix-OLED-displays, so that they can gain more interest especially in high-grade applications, like e.g. in cars.

The research association with the name CARO is one of the research associations, which is promoted within the scope of the initiative "OLED 2015" (phase 1), set up by the German Ministry for Education and Research in 2006. The participating CARO-partners thank the ministry for the financial assistance of the individual projects with the project codes 01BD 0680-0688; the project will expire in autumn.

For further information please contact:

Prof. Dr. Chihao Xu
Phone: +49 681/302-4305
chihao.xu@lme.uni-saarland.de
Universität des Saarlandes
Lehrstuhl für Mikroelektronik
Campus
66123 Saarbrücken
Dr. Jürgen Wahl
Phone: +49 6073 721 200
Juergen.Wahl@Optrex.de
Optrex Europe GmbH
Seligenstädter Str. 40
64832 Babenhausen
Ines Schedwill
Phone: +49 351 8823-238
info@ipms.fraunhofer.de
Fraunhofer-Institut für Photonische Mikrosysteme
Maria-Reiche-Str. 2
01109 Dresden

Irina Urig | idw
Further information:
http://www.lme.uni-saarland.de
http://www.optrex.de
http://www.ipms.fraunhofer.de

Further reports about: CARO-project OLED OLED-Display Optrex SQC digital camera organic material

More articles from Power and Electrical Engineering:

nachricht Ultrathin device harvests electricity from human motion
24.07.2017 | Vanderbilt University

nachricht Stanford researchers develop a new type of soft, growing robot
21.07.2017 | Stanford University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>