Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

"Green" OLED-Displays - High Image Quality at Low Energy

14.10.2009
Chihao Xu, professor for microelectronics at Saarland-University, has achieved a breakthrough in power-efficient driving of OLED-displays.

They are regarded as displays of the future - organic light emitting diode-displays - called OLED-displays in short. This technology is already applied in mobile phones, MP3-players and digital cameras.

It is based on the phenomenon that certain organic materials emit light, when fed by an electric current. The new OLED-displays can be thin as a film and just as flexible. Furthermore they have a wide viewing angle and display videos perfectly. A further benefit is that these displays need little energy.

"Compared to the present standard, more than the half of the energy can be saved for the OLED-display-operation", Chihao Xu stated. "Especially for mobile applications, saving of energy is reasonable" explains the professor. The display consumes most of the energy in mobile devices such as the mobile phone. Especially by charging and discharging a lot of energy gets lost". The scientists from Saarbrücken are searching for avoiding this high power loss.

This shall be achieved by the new driving scheme SQC (State dependent Charge controlled Driving) for actuating passive matrix OLED-displays. This scheme will substantially reduce the power consumption especially for high resolution displays, and will naturally guarantee the known excellent image quality of an OLED-display.

The microelectronics group of Saarland University is worldwide leading in the field of the OLED-driving. Within the CARO-project (CAR OLED) Chihao Xu and his team together with partners from science and industry, such as Optrex Europe GmbH and the Fraunhofer Institute for Photonic Microsystems (PIMS), participated in the development of a new driver chip, which shall be implemented in OLED-displays for cars. In this project, a new multi-line addressing scheme ("SELA", Summed Equi-Line-Addressing) is used. This method significantly increases the lifetime of OLEDs and makes them more attractive for high performance applications.

"OLEDs have many advantages, particularly in cars. The displays react immediately also at very low temperatures. Besides, dark pixels are really black and differ only slightly from the surroundings in the cockpit. This leads to an appearance more beautiful and more splendid", explains Chihao Xu. The driver chip from the CARO-project, realized by the Fraunhofer IPMS, is designed in such a versatile manner that also SQC can be implemented.

"Also with regard to cars, saving of energy is an important matter" says professor Xu. "Therefore it is consequent to research on the combination of this power-efficient driving scheme and the Summed-Equi-Line-Addressing and to develop a marketable demonstrator".

Now, the microelectronics group of Saarbrücken will together with Optrex Europe GmbH and further partners continue to push on the efficient control of passive matrix-OLED-displays, so that they can gain more interest especially in high-grade applications, like e.g. in cars.

The research association with the name CARO is one of the research associations, which is promoted within the scope of the initiative "OLED 2015" (phase 1), set up by the German Ministry for Education and Research in 2006. The participating CARO-partners thank the ministry for the financial assistance of the individual projects with the project codes 01BD 0680-0688; the project will expire in autumn.

For further information please contact:

Prof. Dr. Chihao Xu
Phone: +49 681/302-4305
chihao.xu@lme.uni-saarland.de
Universität des Saarlandes
Lehrstuhl für Mikroelektronik
Campus
66123 Saarbrücken
Dr. Jürgen Wahl
Phone: +49 6073 721 200
Juergen.Wahl@Optrex.de
Optrex Europe GmbH
Seligenstädter Str. 40
64832 Babenhausen
Ines Schedwill
Phone: +49 351 8823-238
info@ipms.fraunhofer.de
Fraunhofer-Institut für Photonische Mikrosysteme
Maria-Reiche-Str. 2
01109 Dresden

Irina Urig | idw
Further information:
http://www.lme.uni-saarland.de
http://www.optrex.de
http://www.ipms.fraunhofer.de

Further reports about: CARO-project OLED OLED-Display Optrex SQC digital camera organic material

More articles from Power and Electrical Engineering:

nachricht Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent
25.09.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Producing electricity during flight
20.09.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>