Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

"Green" OLED-Displays - High Image Quality at Low Energy

14.10.2009
Chihao Xu, professor for microelectronics at Saarland-University, has achieved a breakthrough in power-efficient driving of OLED-displays.

They are regarded as displays of the future - organic light emitting diode-displays - called OLED-displays in short. This technology is already applied in mobile phones, MP3-players and digital cameras.

It is based on the phenomenon that certain organic materials emit light, when fed by an electric current. The new OLED-displays can be thin as a film and just as flexible. Furthermore they have a wide viewing angle and display videos perfectly. A further benefit is that these displays need little energy.

"Compared to the present standard, more than the half of the energy can be saved for the OLED-display-operation", Chihao Xu stated. "Especially for mobile applications, saving of energy is reasonable" explains the professor. The display consumes most of the energy in mobile devices such as the mobile phone. Especially by charging and discharging a lot of energy gets lost". The scientists from Saarbrücken are searching for avoiding this high power loss.

This shall be achieved by the new driving scheme SQC (State dependent Charge controlled Driving) for actuating passive matrix OLED-displays. This scheme will substantially reduce the power consumption especially for high resolution displays, and will naturally guarantee the known excellent image quality of an OLED-display.

The microelectronics group of Saarland University is worldwide leading in the field of the OLED-driving. Within the CARO-project (CAR OLED) Chihao Xu and his team together with partners from science and industry, such as Optrex Europe GmbH and the Fraunhofer Institute for Photonic Microsystems (PIMS), participated in the development of a new driver chip, which shall be implemented in OLED-displays for cars. In this project, a new multi-line addressing scheme ("SELA", Summed Equi-Line-Addressing) is used. This method significantly increases the lifetime of OLEDs and makes them more attractive for high performance applications.

"OLEDs have many advantages, particularly in cars. The displays react immediately also at very low temperatures. Besides, dark pixels are really black and differ only slightly from the surroundings in the cockpit. This leads to an appearance more beautiful and more splendid", explains Chihao Xu. The driver chip from the CARO-project, realized by the Fraunhofer IPMS, is designed in such a versatile manner that also SQC can be implemented.

"Also with regard to cars, saving of energy is an important matter" says professor Xu. "Therefore it is consequent to research on the combination of this power-efficient driving scheme and the Summed-Equi-Line-Addressing and to develop a marketable demonstrator".

Now, the microelectronics group of Saarbrücken will together with Optrex Europe GmbH and further partners continue to push on the efficient control of passive matrix-OLED-displays, so that they can gain more interest especially in high-grade applications, like e.g. in cars.

The research association with the name CARO is one of the research associations, which is promoted within the scope of the initiative "OLED 2015" (phase 1), set up by the German Ministry for Education and Research in 2006. The participating CARO-partners thank the ministry for the financial assistance of the individual projects with the project codes 01BD 0680-0688; the project will expire in autumn.

For further information please contact:

Prof. Dr. Chihao Xu
Phone: +49 681/302-4305
chihao.xu@lme.uni-saarland.de
Universität des Saarlandes
Lehrstuhl für Mikroelektronik
Campus
66123 Saarbrücken
Dr. Jürgen Wahl
Phone: +49 6073 721 200
Juergen.Wahl@Optrex.de
Optrex Europe GmbH
Seligenstädter Str. 40
64832 Babenhausen
Ines Schedwill
Phone: +49 351 8823-238
info@ipms.fraunhofer.de
Fraunhofer-Institut für Photonische Mikrosysteme
Maria-Reiche-Str. 2
01109 Dresden

Irina Urig | idw
Further information:
http://www.lme.uni-saarland.de
http://www.optrex.de
http://www.ipms.fraunhofer.de

Further reports about: CARO-project OLED OLED-Display Optrex SQC digital camera organic material

More articles from Power and Electrical Engineering:

nachricht Linear potentiometer LRW2/3 - Maximum precision with many measuring points
17.05.2017 | WayCon Positionsmesstechnik GmbH

nachricht First flat lens for immersion microscope provides alternative to centuries-old technique
17.05.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>