Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


“Quiet” Fire Extinguisher Protects Hard Disks


A smaller and quieter fire extinguisher nozzle developed for Siemens gaseous fire suppression systems has been proven to minimize noise-related damage to computer hard disks. Experiments conducted by Corporate Technology (CT) – Siemens’ global research organization – have determined that hard disks can be damaged by sound levels of 110 decibels or more and the associated vibrations.

The use of cables and servers in computer centers increases the risk of fire, with such equipment accounting for around six percent of all infrastructure failures. Many potential ignition sources – such as computers running hot, excessive cabling and high levels of air circulation for cooling systems – can quickly trigger a blaze that can spread rapidly.

Data Center: Experiments have shown that the noise from fire extinguishing nozzles irreparably damages hard discs.

Credit: Thomas Trutschel/Photothek/Getty Images

It is therefore crucial to detect and extinguish such fires as quickly as possible. As is the case at many industrial facilities and archives, fires at computer centers are generally not extinguished with water but instead with gas.

If a fire erupts, extinguishing systems flood the affected area with gas within seconds. The natural gases used, which include argon, nitrogen, and carbon dioxide, quickly displace oxygen. Alternative systems use chemical extinguishing agents, which extinguish fires by extracting heat (energy) from flames.

But there’s a big drawback. Experiments conducted by Siemens Corporate Technology have shown that the noise from fire extinguishing nozzles irreparably damages hard discs. Measurements show that a conventional fire extinguisher nozzle generates a sound level of around 130 decibels, which is equivalent to a fighter jet taking off.

In such cases, computer center operators have noticed that such extinguishing systems caused hard disks to fail, although usually only temporarily. Researchers from Corporate Technology have confirmed that sound levels starting at 110 decibels, and the associated vibrations, can damage hard disks.

Small Nozzles Reduce Sound Levels

With this fact in mind, several years ago Siemens Building Technologies developed a new extinguisher nozzle in order to reduce sound levels. The Sinorix Silent Nozzle is designed to keep sound levels below 100 decibels during extinguishing operations as this comparatively low level doesn’t harm hard disk drives. The nozzle also allows the operator to choose the direction in which the gas will be discharged in order to ensure that hard disks are exposed to as little noise as possible.

The nozzle can be used with nitrogen and argon and operates at the same pressure as other nozzles – i.e. at around 60 bars – when nitrogen, carbon dioxide or argon are used as extinguishing gases. Siemens experts reduced the size of the nozzles and spread a number of them out at intervals that raise the frequency of the tone they produce.

This, in turn, reduces the mechanical power of the noise emitted – meaning that the extinguisher nozzle is quieter and the resulting sound level is below 100 decibels even as flooding times remain identical to those for conventional nozzles. A similar nozzle concept is currently being developed for chemical extinguishing agents. The new nozzle is fully compatible with Sinorix gas extinguishing systems and can also be retrofitted into existing facilities.

Confirmed Results

The study has now confirmed the effectiveness of these nozzles under real-life conditions. Siemens experts first compared the effects of loud and less noisy extinguishing systems in a CT lab. They used audio files for the experiment and exposed 20 hard disks in mint condition to the noise.

They then utilized a data center module to test the effects of the various sound levels on IT storage systems under real conditions. They found that data was lost in every instance in which sound levels were high. At the same time, they discovered that a lower sound level corresponding to that of the Sinorix Silent Nozzle did not lead to any hard disk damage.

Weitere Informationen:

Dr. Norbert Aschenbrenner | Siemens AG

More articles from Power and Electrical Engineering:

nachricht 'Super yeast' has the power to improve economics of biofuels
18.10.2016 | University of Wisconsin-Madison

nachricht Engineers reveal fabrication process for revolutionary transparent sensors
14.10.2016 | University of Wisconsin-Madison

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>