Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Queen's energy partnership makes waves for UK

09.02.2009
The likelihood of the UK being able to produce widespread energy from wave-generated power has been given a vital boost.

Aquamarine Power Limited, a marine energy company, and Queen’s University Belfast have agreed a new five year research partnership which will develop the next generation hydro-electric wave power converter.

Already the partnership has created the Oyster® wave power device. It is designed to capture the energy found in amplified surge forces in nearshore waves.

The first prototype of Oyster®, a hydro-electric wave power converter, is to be launched at sea for the first time this summer at the European Marine Energy Centre off the coast of Orkney.

The Oyster® system consists of a simple steel Oscillating Wave Surge Converter, or pump, fitted with double acting water pistons, deployed near-shore in depths around 10-12m. Each passing wave activates the pump; which delivers high pressure water via a sub-sea pipeline to the shore. Onshore, high-pressure water is converted to electrical power using proven, conventional hydro-electric generators. The nearshore location is easy to access; and the most complex part of the system is onshore, so it is accessible 365 days a year.

The latest five-year deal will see Aquamarine work alongside the Environmental Engineering Research Centre at Queen’s. The team from Aquamarine will model several devices in the state-of-the-art wave tanks in the University’s Civil Engineering Department and at the Marine Biology Centre at Portaferry.

Led by Professor Trevor Whittaker, from the Queen’s School of Planning, Architecture and Civil Engineering, the Wave Power Research Group is regarded as being among the best marine renewable energy groups in the world.

The team will monitor loading, survivability and how the devices interact with each other to guarantee continuous power output in all sea states.

The Partnership will also provide Aquamarine with access to a second, larger wave tank due to open at Queen’s Portaferry facility which is being part-funded through the University’s Institute for a Sustainable World initiative.

The Portaferry facility will allow the team to test groups of wave power devices which can be deployed in large numbers to form off-shore power stations.

Professor Trevor Whittaker, Head of the Wave Power Research Centre and a world-renowned expert on wave power and coastal engineering said: “My team at Queen’s specialises in the application of fundamental research to industrial development, therefore I am very pleased to strengthen our links with Aquamarine Power.

“It provides focus for the work of our research students, giving them an opportunity to participate in cutting edge research that will benefit society and the environment for current and future generations.”

Martin McAdam, Chief Executive of Aquamarine said: “I am delighted to announce Aquamarine’s continuing relationship with Queen’s University Belfast’s team. Professor Trevor Whittaker is an award-winning expert in wave energy research. He and his group have tested and deployed more devices in their time than any other research facility in the world.

“This agreement creates a fantastic opportunity on two fronts. Firstly it provides Aquamarine with access to the University’s world-class wave power test facilities, enabling Aquamarine to continue to enhance the design of Oyster® as a market leading technology, and as importantly, gives us access to the brightest PhD students in this field.”

Lisa Mitchell | alfa
Further information:
http://www.qub.ac.uk

More articles from Power and Electrical Engineering:

nachricht Multicrystalline Silicon Solar Cell with 21.9 % Efficiency: Fraunhofer ISE Again Holds World Record
20.02.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Six-legged robots faster than nature-inspired gait
17.02.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>