Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quality offensive by the German wind energy industry

22.06.2011
The German Government and State of Bremen are involved in the establishment of a new scientific testing facility in Bremerhaven

The expansion of wind energy is an important political and commercial aspect of Germany’s strategy for the future. For this reason the establishment of a nacelle test stand for wind turbines is being jointly funded by the Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU), the State of Bremen, and the European Fund for Regional Development (EFRD). Fraunhofer IWES in Bremerhaven is responsible for the planning, construction, and operation of this test stand.

The Dynamic Nacelle Laboratory (DyNaLab) will start up in 2014 and will be the first nacelle test facility in Germany for testing drive powers up to 10 megawatts. The facility will cover an area of about 2000 square meters and will enable state-of-the-art nacelles with drive powers from 2 to 7.5 megawatts to be tested. The carrying out of tests in the laboratory and on the wind turbine under near-real conditions will promote the development of efficient and reliable wind turbines.

This will spur on the expansion of wind energy in Germany and safeguard our international market share in the longer term. The “Made in Germany” label will hold even more promise for German manufacturers if the quality and functional reliability of their products stand out and if this can be demonstrated in tests.

“The nacelle test stand will be another milestone in the professionalization and industrialization of the wind energy industry” assures Institute Director Prof. Andreas Reuter. The technical reliability of a nacelle, which can weigh up to 400 metric tons, largely determines the overall availability of a wind turbine to the grid.

The drive train is the core component of a nacelle and is the high-load link between the flow-mechanical energy conversion by the rotor system and the electromechanical energy conversion on the grid side. Meaningful field tests will give manufacturers opportunities to optimize and further develop drive trains, generators, converters, and control concepts. It may also encourage the use of new materials for electromechanical engineering.

The technical specifications of the nacelle test stand have already been defined. In the short term, the testing of the integration of wind turbines into grids will bring major benefits. In the medium term the plan is to also develop and validate test and certification methods which the Fraunhofer IWES wants to realize on the new test stand in collaboration with its partners.

“We plan to move a large part of the necessary certification testing into the laboratory”, says Dr. Jan Wenske, Head of DyNaLab and Head of the Drive Train group at Fraunhofer IWES. This will enable the processes to be noticeably accelerated.

Britta Rollert | Fraunhofer-Institut
Further information:
http://www.iwes.fraunhofer.de

More articles from Power and Electrical Engineering:

nachricht Engineers program tiny robots to move, think like insects
15.12.2017 | Cornell University

nachricht Electromagnetic water cloak eliminates drag and wake
12.12.2017 | Duke University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>