Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Quality offensive by the German wind energy industry

The German Government and State of Bremen are involved in the establishment of a new scientific testing facility in Bremerhaven

The expansion of wind energy is an important political and commercial aspect of Germany’s strategy for the future. For this reason the establishment of a nacelle test stand for wind turbines is being jointly funded by the Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU), the State of Bremen, and the European Fund for Regional Development (EFRD). Fraunhofer IWES in Bremerhaven is responsible for the planning, construction, and operation of this test stand.

The Dynamic Nacelle Laboratory (DyNaLab) will start up in 2014 and will be the first nacelle test facility in Germany for testing drive powers up to 10 megawatts. The facility will cover an area of about 2000 square meters and will enable state-of-the-art nacelles with drive powers from 2 to 7.5 megawatts to be tested. The carrying out of tests in the laboratory and on the wind turbine under near-real conditions will promote the development of efficient and reliable wind turbines.

This will spur on the expansion of wind energy in Germany and safeguard our international market share in the longer term. The “Made in Germany” label will hold even more promise for German manufacturers if the quality and functional reliability of their products stand out and if this can be demonstrated in tests.

“The nacelle test stand will be another milestone in the professionalization and industrialization of the wind energy industry” assures Institute Director Prof. Andreas Reuter. The technical reliability of a nacelle, which can weigh up to 400 metric tons, largely determines the overall availability of a wind turbine to the grid.

The drive train is the core component of a nacelle and is the high-load link between the flow-mechanical energy conversion by the rotor system and the electromechanical energy conversion on the grid side. Meaningful field tests will give manufacturers opportunities to optimize and further develop drive trains, generators, converters, and control concepts. It may also encourage the use of new materials for electromechanical engineering.

The technical specifications of the nacelle test stand have already been defined. In the short term, the testing of the integration of wind turbines into grids will bring major benefits. In the medium term the plan is to also develop and validate test and certification methods which the Fraunhofer IWES wants to realize on the new test stand in collaboration with its partners.

“We plan to move a large part of the necessary certification testing into the laboratory”, says Dr. Jan Wenske, Head of DyNaLab and Head of the Drive Train group at Fraunhofer IWES. This will enable the processes to be noticeably accelerated.

Britta Rollert | Fraunhofer-Institut
Further information:

More articles from Power and Electrical Engineering:

nachricht 'Super yeast' has the power to improve economics of biofuels
18.10.2016 | University of Wisconsin-Madison

nachricht Engineers reveal fabrication process for revolutionary transparent sensors
14.10.2016 | University of Wisconsin-Madison

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>