Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quality offensive by the German wind energy industry

22.06.2011
The German Government and State of Bremen are involved in the establishment of a new scientific testing facility in Bremerhaven

The expansion of wind energy is an important political and commercial aspect of Germany’s strategy for the future. For this reason the establishment of a nacelle test stand for wind turbines is being jointly funded by the Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU), the State of Bremen, and the European Fund for Regional Development (EFRD). Fraunhofer IWES in Bremerhaven is responsible for the planning, construction, and operation of this test stand.

The Dynamic Nacelle Laboratory (DyNaLab) will start up in 2014 and will be the first nacelle test facility in Germany for testing drive powers up to 10 megawatts. The facility will cover an area of about 2000 square meters and will enable state-of-the-art nacelles with drive powers from 2 to 7.5 megawatts to be tested. The carrying out of tests in the laboratory and on the wind turbine under near-real conditions will promote the development of efficient and reliable wind turbines.

This will spur on the expansion of wind energy in Germany and safeguard our international market share in the longer term. The “Made in Germany” label will hold even more promise for German manufacturers if the quality and functional reliability of their products stand out and if this can be demonstrated in tests.

“The nacelle test stand will be another milestone in the professionalization and industrialization of the wind energy industry” assures Institute Director Prof. Andreas Reuter. The technical reliability of a nacelle, which can weigh up to 400 metric tons, largely determines the overall availability of a wind turbine to the grid.

The drive train is the core component of a nacelle and is the high-load link between the flow-mechanical energy conversion by the rotor system and the electromechanical energy conversion on the grid side. Meaningful field tests will give manufacturers opportunities to optimize and further develop drive trains, generators, converters, and control concepts. It may also encourage the use of new materials for electromechanical engineering.

The technical specifications of the nacelle test stand have already been defined. In the short term, the testing of the integration of wind turbines into grids will bring major benefits. In the medium term the plan is to also develop and validate test and certification methods which the Fraunhofer IWES wants to realize on the new test stand in collaboration with its partners.

“We plan to move a large part of the necessary certification testing into the laboratory”, says Dr. Jan Wenske, Head of DyNaLab and Head of the Drive Train group at Fraunhofer IWES. This will enable the processes to be noticeably accelerated.

Britta Rollert | Fraunhofer-Institut
Further information:
http://www.iwes.fraunhofer.de

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers create artificial materials atom-by-atom

28.03.2017 | Physics and Astronomy

Researchers show p300 protein may suppress leukemia in MDS patients

28.03.2017 | Health and Medicine

Asian dust providing key nutrients for California's giant sequoias

28.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>