Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Proven Method Available to Significantly Reduce Energy Consumption in Street Lighting

04.11.2009
Improved measurement techniques could cut costs and improve visibility perception

Experts at Rensselaer Polytechnic Institute’s Lighting Research Center (LRC) estimate that about half of the approximately 13 million streetlights in America have the opportunity to significantly reduce energy consumption by as much as 50 percent, translating to an annual savings of 1 billion kWh, and a reduction in power plant CO2 emissions of 546,000 tons per year.

LRC researchers demonstrated in multiple field tests that, by using what they describe as a Unified System of Photometry, a street lighting system can be designed to reduce energy use while maintaining or improving perceptions of visibility, safety, and security.

“In nighttime conditions, the human eye is more sensitive to short-wavelength light, which produces ‘cool’ tones like blue or green, as opposed to long-wavelength light, which produces ‘warm’ tones like yellow and red,” said LRC Director of Energy Programs Peter Morante. “By replacing traditional, yellowish high-pressure sodium (HPS) lights with ‘cool’ white light sources, such as induction, fluorescent, ceramic metal halide, or LEDs, we can actually reduce the amount of electric power used for lighting while maintaining or even improving visibility in nighttime conditions.”

The eye has two types of visual receptors in the retina, cones and rods. The current system of photometry—the measurement of visible light in terms of human perception for certain activities like reading and seeing fine details—is based on how some cones respond to different wavelengths. Cones are the dominant visual receptor under photopic (daylight) lighting conditions. Rods function primarily under very dim conditions. According to Morante, it is necessary to redefine the luminous efficacy functions needed for nighttime applications where electric lighting is used and both rods and cones contribute to vision The LRC’s Unified System of Photometry was designed to characterize light at any level, including the mesopic level where both rods and cones operate.

LRC field demonstration results from the past few years in rural and suburban areas of Connecticut, Massachusetts, and Texas verified that by implementing the Unified System of Photometry the street lighting system consumed 30 to 50 percent less electric power and the residents believed they could see better and said they felt safer, when compared to lighting systems designed using the traditional system of photometry. The Unified System of Photometry provides an objective method for optimizing light source spectra for minimal energy use while maintaining good visibility, according to the LRC researcher team.

There is now renewed interest in the research, according to Morante, as an increasing number of cities and towns across the country are examining ways to save energy either through a reduction or a change in outdoor lighting. And the interest seems to be spreading.

According to LRC Director Mark Rea, Ph.D., researchers around the world are also concluding that the current system of photometry could use some updating to better characterize light source performance under nighttime conditions. The International Commission on Illumination, also known as the CIE from its French title, the Commission Internationale de l'Eclairage, will be releasing its own form of unified photometry for outdoor lighting, explained Rea, a long-standing CIE member.

A full report detailing energy use, consumer acceptance and perceptions, visibility, and light levels for one of the LRC’s field tests in the City of Groton, Connecticut, was published last year and is available for free download at: www.lrc.rpi.edu/researchAreas/pdf/GrotonFinalReport.pdf.

In the LRC field studies, the mesopic street lighting system met all utility requirements and, in addition to significant reductions in energy consumption, was preferred by residents over the yellow-appearing HPS system.

The following selected technical papers explain the Unified System of Photometry:

• Rea, M., J.D. Bullough, J.P. Freyssinier, and A. Bierman. 2004. A proposed Unified System of Photometry. Lighting Research and Technology 36(2): 85-111.

• Rea, M., Z. Yuan, and A. Bierman. 2009. The Unified System of Photometry Applied to Remote Airfield Lighting. Lighting Research and Technology 41(1): 51-70.

In January 2009, the Alliance for Solid-State Illumination Systems and Technologies (ASSIST) published a volume in its ASSIST recommends series, “Outdoor Lighting: Visual Efficacy,” which also describes the Unified System of Photometry. The publication can be downloaded for free by visiting http://www.lrc.rpi.edu/programs/solidstate/assist/recommends/outdoorlighting.asp.

Learn more about LRC’s outdoor and street lighting research at these LRC Program pages:
• LRC Automotive and Street Lighting: www.lrc.rpi.edu/researchAreas/automotive.asp

• LRC Outdoor Lighting: www.lrc.rpi.edu/researchAreas/outdoor.asp

About the Lighting Research Center
The Lighting Research Center (LRC) is part of Rensselaer Polytechnic Institute of Troy, N.Y., and is the leading university-based research center devoted to lighting. The LRC offers the world's premier graduate education in lighting, including one- and two-year master's programs and a Ph.D. program. Since 1988 the LRC has built an international reputation as a reliable source for objective information about lighting technologies, applications, and products. The LRC also provides training programs for government agencies, utilities, contractors, lighting designers, and other lighting professionals.

Mary Cimo | Newswise Science News
Further information:
http://www.lrc.rpi.edu

More articles from Power and Electrical Engineering:

nachricht Electromagnetic water cloak eliminates drag and wake
12.12.2017 | Duke University

nachricht Two holograms in one surface
12.12.2017 | California Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>