Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Proven Method Available to Significantly Reduce Energy Consumption in Street Lighting

04.11.2009
Improved measurement techniques could cut costs and improve visibility perception

Experts at Rensselaer Polytechnic Institute’s Lighting Research Center (LRC) estimate that about half of the approximately 13 million streetlights in America have the opportunity to significantly reduce energy consumption by as much as 50 percent, translating to an annual savings of 1 billion kWh, and a reduction in power plant CO2 emissions of 546,000 tons per year.

LRC researchers demonstrated in multiple field tests that, by using what they describe as a Unified System of Photometry, a street lighting system can be designed to reduce energy use while maintaining or improving perceptions of visibility, safety, and security.

“In nighttime conditions, the human eye is more sensitive to short-wavelength light, which produces ‘cool’ tones like blue or green, as opposed to long-wavelength light, which produces ‘warm’ tones like yellow and red,” said LRC Director of Energy Programs Peter Morante. “By replacing traditional, yellowish high-pressure sodium (HPS) lights with ‘cool’ white light sources, such as induction, fluorescent, ceramic metal halide, or LEDs, we can actually reduce the amount of electric power used for lighting while maintaining or even improving visibility in nighttime conditions.”

The eye has two types of visual receptors in the retina, cones and rods. The current system of photometry—the measurement of visible light in terms of human perception for certain activities like reading and seeing fine details—is based on how some cones respond to different wavelengths. Cones are the dominant visual receptor under photopic (daylight) lighting conditions. Rods function primarily under very dim conditions. According to Morante, it is necessary to redefine the luminous efficacy functions needed for nighttime applications where electric lighting is used and both rods and cones contribute to vision The LRC’s Unified System of Photometry was designed to characterize light at any level, including the mesopic level where both rods and cones operate.

LRC field demonstration results from the past few years in rural and suburban areas of Connecticut, Massachusetts, and Texas verified that by implementing the Unified System of Photometry the street lighting system consumed 30 to 50 percent less electric power and the residents believed they could see better and said they felt safer, when compared to lighting systems designed using the traditional system of photometry. The Unified System of Photometry provides an objective method for optimizing light source spectra for minimal energy use while maintaining good visibility, according to the LRC researcher team.

There is now renewed interest in the research, according to Morante, as an increasing number of cities and towns across the country are examining ways to save energy either through a reduction or a change in outdoor lighting. And the interest seems to be spreading.

According to LRC Director Mark Rea, Ph.D., researchers around the world are also concluding that the current system of photometry could use some updating to better characterize light source performance under nighttime conditions. The International Commission on Illumination, also known as the CIE from its French title, the Commission Internationale de l'Eclairage, will be releasing its own form of unified photometry for outdoor lighting, explained Rea, a long-standing CIE member.

A full report detailing energy use, consumer acceptance and perceptions, visibility, and light levels for one of the LRC’s field tests in the City of Groton, Connecticut, was published last year and is available for free download at: www.lrc.rpi.edu/researchAreas/pdf/GrotonFinalReport.pdf.

In the LRC field studies, the mesopic street lighting system met all utility requirements and, in addition to significant reductions in energy consumption, was preferred by residents over the yellow-appearing HPS system.

The following selected technical papers explain the Unified System of Photometry:

• Rea, M., J.D. Bullough, J.P. Freyssinier, and A. Bierman. 2004. A proposed Unified System of Photometry. Lighting Research and Technology 36(2): 85-111.

• Rea, M., Z. Yuan, and A. Bierman. 2009. The Unified System of Photometry Applied to Remote Airfield Lighting. Lighting Research and Technology 41(1): 51-70.

In January 2009, the Alliance for Solid-State Illumination Systems and Technologies (ASSIST) published a volume in its ASSIST recommends series, “Outdoor Lighting: Visual Efficacy,” which also describes the Unified System of Photometry. The publication can be downloaded for free by visiting http://www.lrc.rpi.edu/programs/solidstate/assist/recommends/outdoorlighting.asp.

Learn more about LRC’s outdoor and street lighting research at these LRC Program pages:
• LRC Automotive and Street Lighting: www.lrc.rpi.edu/researchAreas/automotive.asp

• LRC Outdoor Lighting: www.lrc.rpi.edu/researchAreas/outdoor.asp

About the Lighting Research Center
The Lighting Research Center (LRC) is part of Rensselaer Polytechnic Institute of Troy, N.Y., and is the leading university-based research center devoted to lighting. The LRC offers the world's premier graduate education in lighting, including one- and two-year master's programs and a Ph.D. program. Since 1988 the LRC has built an international reputation as a reliable source for objective information about lighting technologies, applications, and products. The LRC also provides training programs for government agencies, utilities, contractors, lighting designers, and other lighting professionals.

Mary Cimo | Newswise Science News
Further information:
http://www.lrc.rpi.edu

More articles from Power and Electrical Engineering:

nachricht Stretchable biofuel cells extract energy from sweat to power wearable devices
22.08.2017 | University of California - San Diego

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>