Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Proven Method Available to Significantly Reduce Energy Consumption in Street Lighting

Improved measurement techniques could cut costs and improve visibility perception

Experts at Rensselaer Polytechnic Institute’s Lighting Research Center (LRC) estimate that about half of the approximately 13 million streetlights in America have the opportunity to significantly reduce energy consumption by as much as 50 percent, translating to an annual savings of 1 billion kWh, and a reduction in power plant CO2 emissions of 546,000 tons per year.

LRC researchers demonstrated in multiple field tests that, by using what they describe as a Unified System of Photometry, a street lighting system can be designed to reduce energy use while maintaining or improving perceptions of visibility, safety, and security.

“In nighttime conditions, the human eye is more sensitive to short-wavelength light, which produces ‘cool’ tones like blue or green, as opposed to long-wavelength light, which produces ‘warm’ tones like yellow and red,” said LRC Director of Energy Programs Peter Morante. “By replacing traditional, yellowish high-pressure sodium (HPS) lights with ‘cool’ white light sources, such as induction, fluorescent, ceramic metal halide, or LEDs, we can actually reduce the amount of electric power used for lighting while maintaining or even improving visibility in nighttime conditions.”

The eye has two types of visual receptors in the retina, cones and rods. The current system of photometry—the measurement of visible light in terms of human perception for certain activities like reading and seeing fine details—is based on how some cones respond to different wavelengths. Cones are the dominant visual receptor under photopic (daylight) lighting conditions. Rods function primarily under very dim conditions. According to Morante, it is necessary to redefine the luminous efficacy functions needed for nighttime applications where electric lighting is used and both rods and cones contribute to vision The LRC’s Unified System of Photometry was designed to characterize light at any level, including the mesopic level where both rods and cones operate.

LRC field demonstration results from the past few years in rural and suburban areas of Connecticut, Massachusetts, and Texas verified that by implementing the Unified System of Photometry the street lighting system consumed 30 to 50 percent less electric power and the residents believed they could see better and said they felt safer, when compared to lighting systems designed using the traditional system of photometry. The Unified System of Photometry provides an objective method for optimizing light source spectra for minimal energy use while maintaining good visibility, according to the LRC researcher team.

There is now renewed interest in the research, according to Morante, as an increasing number of cities and towns across the country are examining ways to save energy either through a reduction or a change in outdoor lighting. And the interest seems to be spreading.

According to LRC Director Mark Rea, Ph.D., researchers around the world are also concluding that the current system of photometry could use some updating to better characterize light source performance under nighttime conditions. The International Commission on Illumination, also known as the CIE from its French title, the Commission Internationale de l'Eclairage, will be releasing its own form of unified photometry for outdoor lighting, explained Rea, a long-standing CIE member.

A full report detailing energy use, consumer acceptance and perceptions, visibility, and light levels for one of the LRC’s field tests in the City of Groton, Connecticut, was published last year and is available for free download at:

In the LRC field studies, the mesopic street lighting system met all utility requirements and, in addition to significant reductions in energy consumption, was preferred by residents over the yellow-appearing HPS system.

The following selected technical papers explain the Unified System of Photometry:

• Rea, M., J.D. Bullough, J.P. Freyssinier, and A. Bierman. 2004. A proposed Unified System of Photometry. Lighting Research and Technology 36(2): 85-111.

• Rea, M., Z. Yuan, and A. Bierman. 2009. The Unified System of Photometry Applied to Remote Airfield Lighting. Lighting Research and Technology 41(1): 51-70.

In January 2009, the Alliance for Solid-State Illumination Systems and Technologies (ASSIST) published a volume in its ASSIST recommends series, “Outdoor Lighting: Visual Efficacy,” which also describes the Unified System of Photometry. The publication can be downloaded for free by visiting

Learn more about LRC’s outdoor and street lighting research at these LRC Program pages:
• LRC Automotive and Street Lighting:

• LRC Outdoor Lighting:

About the Lighting Research Center
The Lighting Research Center (LRC) is part of Rensselaer Polytechnic Institute of Troy, N.Y., and is the leading university-based research center devoted to lighting. The LRC offers the world's premier graduate education in lighting, including one- and two-year master's programs and a Ph.D. program. Since 1988 the LRC has built an international reputation as a reliable source for objective information about lighting technologies, applications, and products. The LRC also provides training programs for government agencies, utilities, contractors, lighting designers, and other lighting professionals.

Mary Cimo | Newswise Science News
Further information:

More articles from Power and Electrical Engineering:

nachricht Neutrons pave the way to accelerated production of lithium-ion cells
20.03.2018 | Technische Universität München

nachricht Monocrystalline silicon thin film for cost-cutting solar cells with 10-times faster growth rate fabricated
16.03.2018 | Tokyo Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Scientists invented method of catching bacteria with 'photonic hook'

20.03.2018 | Physics and Astronomy

Next Generation Cryptography

20.03.2018 | Information Technology

Science & Research
Overview of more VideoLinks >>>