Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Process Converts Human Waste Into Rocket Fuel

04.12.2014

Buck Rogers surely couldn’t have seen this one coming, but at NASA’s request, University of Florida researchers have figured out how to turn human waste -- yes, that kind -- into rocket fuel.

Adolescent jokes aside, the process finally makes useful something that until now has been collected to burn up on re-entry. What’s more, like so many other things developed for the space program, the process could well turn up on Earth, said Pratap Pullammanappallil, a UF associate professor of agricultural and biological engineering.


Photo by Amy Stuart, UF/IFAS Communications.

Pratap Pullammanappallil, a UF associate professor of agricultural and biological engineering, poses with an anaerobic digester used in a process he developed at NASA’s request to turn human waste into rocket fuel.

“It could be used on campus or around town, or anywhere, to convert waste into fuel,” Pullammanappallil said.

In 2006, NASA began making plans to build an inhabited facility on the moon’s surface between 2019 and 2024. As part of NASA’s moon-base goal, the agency wanted to reduce the weight of spacecraft leaving Earth. Historically, waste generated during spaceflight would not be used further. NASA stores it in containers until it’s loaded into space cargo vehicles that burn as they pass back through the Earth’s atmosphere. For future long-term missions, though, it would be impractical to bring all the stored waste back to Earth.

Dumping it on the moon’s surface is not an option, so the space agency entered into an agreement with UF to develop test ideas.

Pullammanappallil and then-graduate student Abhishek Dhoble accepted the challenge.

“We were trying to find out how much methane can be produced from uneaten food, food packaging and human waste,” said Pullammanappallil, a UF Institute of Food and Agricultural Sciences faculty member and Dhoble’s adviser. “The idea was to see whether we could make enough fuel to launch rockets and not carry all the fuel and its weight from Earth for the return journey. Methane can be used to fuel the rockets. Enough methane can be produced to come back from the moon.”

NASA started by supplying the UF scientists with a packaged form of chemically produced human waste that also included simulated food waste, towels, wash cloths, clothing and packaging materials, Pullammanappallil said. He and Dhoble, now a doctoral student at the University of Illinois, ran laboratory tests to find out how much methane could be produced from the waste and how quickly.

They found the process could produce 290 liters of methane per crew per day, all produced in a week, Pullammanappallil said.

Their results led to the creation of an anaerobic digester process, which kills pathogens from human waste, and produces biogas -- a mixture of methane and carbon dioxide by breaking down organic matter in waste.

In earth-bound applications, that fuel could be used for heating, electricity generation or transportation.

The digestion process also would produce about 200 gallons of non-potable water annually from all the waste. That is water held within the organic matter, which is released as organic matter decomposes. Through electrolysis, the water can then be split into hydrogen and oxygen, and the astronauts can breathe oxygen as a back-up system. The exhaled carbon dioxide and hydrogen can be converted to methane and water in the process, he said.

The study was published last month in the journal Advances in Space Research.

Contact Information
By Brad Buck
352-294-3303
bradbuck@ufl.edu

Source: Pratap Pullammanappallil
352-392-1864, ext. 203
pcpratap@ufl.edu

Brad Buck | newswise

More articles from Power and Electrical Engineering:

nachricht Engineers program tiny robots to move, think like insects
15.12.2017 | Cornell University

nachricht Electromagnetic water cloak eliminates drag and wake
12.12.2017 | Duke University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>