Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Printed solar cells on paper

15.09.2011
The Institute for Print and Media Technology at Chemnitz University of Technology presents solar panels, which are printed with special inks with electrical properties on standard paper

These days, everyone talks about the use of solar energy for the generation of electricity. Conventional solar cells, however, use expensive materials and are manufactured under costly clean room conditions. Consequently, they can only deliver expensive electricity. Researchers at Chemnitz University of Technology have now presented solar panels that are printed on paper.


A 15x15 cm solar module consists of multiple strips (in this case four) of photovoltaic cells. These printed photovoltaic modules are combined via snap fasteners and form a series connection. At the two ends of the serial connection, a connector cable is attached. The front of the module consists of the active layer composition. On the back paper, the substrate is directly visible. Photo: pmTUC/Bystrik Trnovec

The technology known as 3PV (3PV stands for printed paper photovoltaics) uses conventional printing methods and standard substrates, like those used for magazines, posters or packaging. Special inks with electrical properties form the necessary structures on paper, which ensure that electricity is generated when being exposed to light. Since the employed conventional printing methods, i.e. gravure, flexo and offset printing, are very cost-efficient, the printed solar panels shall generate much cheaper electricity in comparison to conventional solar cells.

Prof. Dr. Arved Hübler from the Institute for Print and Media Technology at Chemnitz University of Technology, who is working together with his research team on the 3PV technology for more than three years now, speaks of a paradigm shift in solar technology. His vision for the future is that common printing houses around the world could produce and market 3PV solar panels.

Now the Chemnitz-based researchers have published their results in the journal Advanced Energy Materials. Hübler and his team Tino Zillger, Bystrik Trnovec Mozzam Ali and Nora Wetzold, who have been supported by colleagues from the University of Würzburg with regard to the characterisation of the cells, report that the cells printed in Chemnitz achieve an energy conversion efficiency of 1.3 percent. The researchers use a new material approach. In a special printing process, naturally oxidised zinc is applied as base electrode. The transparent counter electrode is printed with PEDOT, a conductive polymer. "The materials are constantly optimised and we are confident that the 3PV parameters can be further improved," says Tino Zillger, researcher at the Institute for Print and Media Technology and leader of the project. Even the team of Hübler is a bit surprised that it is already possible to produce very stable 3PV modules with a web printing press in the laboratory of the Institute for Print and Media Technology. "Our long experience in the field of printed electronics pays well here," says the head of the chair Print Media Technology.

Hübler assumes that all in all paper solar cells could have the edge over the current technological state of the art due to the efficient production and lower material costs. The aim of further research is to increase the efficiency to more than five percent in order to ensure that a 3PV module is economically attractive despite a life time of less than one year. "In nature we find a model for this strategy: even green leaves only have a moderate energy conversion efficiency of four to seven percent and a life time of less than one year. Nevertheless, this approach is obviously successful," explains Hübler.

The vision of being able to contribute to the overall energy supply with the help of paper solar panels is only one field of application. Researchers at Chemnitz University of Technology have already shown that it is also possible to drive small electrical devices with these paper solar cells. This opens up the possibility to supply mobile devices with “paper power” in a simple and self-sustaining way. Intelligent packaging, for instance, could include many additional features, ranging from displays to sensors. Handling of the paper solar cells can be very simple. Tino Zillger shows a possible solution with 3PV modules manufactured at the Institute for Print and Media Technology: The paper strips can be connected with the help of commercial snap fasteners. Immediately, an electrical current flows. After use, the paper modules can be recycled like any other waste paper. According to Hübler it is, thus, not only possible to generate renewable energy, but also the solar cell itself is made from renewable resources and is consequently renewable.

The publication is available online: Arved Hübler, Bystrik Trnovec, Tino Zillger, Mozzam Ali, Nora Wetzold, Markus Mingebach, Alexander Wagenpfahl, Carsten Deibel, Vladimir Dyakonov: Printed paper photovoltaic cells; Adv. Energy Mat. in print, pre-published at: http://onlinelibrary.wiley.com/doi/10.1002/aenm.201100394/abstract

More information can be found at http://www.pppv.de and is provided by Prof. Dr. Arved Hübler, phone 0371 531-32364, Email pmhuebler@mb.tu-chemnitz.de.

Katharina Thehos | Technische Universität Chemnitz
Further information:
http://www.pppv.de
http://www.tu-chemnitz.de

More articles from Power and Electrical Engineering:

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Researchers develop environmentally friendly soy air filter
16.01.2017 | Washington State University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>