Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Printed solar cells on paper

15.09.2011
The Institute for Print and Media Technology at Chemnitz University of Technology presents solar panels, which are printed with special inks with electrical properties on standard paper

These days, everyone talks about the use of solar energy for the generation of electricity. Conventional solar cells, however, use expensive materials and are manufactured under costly clean room conditions. Consequently, they can only deliver expensive electricity. Researchers at Chemnitz University of Technology have now presented solar panels that are printed on paper.


A 15x15 cm solar module consists of multiple strips (in this case four) of photovoltaic cells. These printed photovoltaic modules are combined via snap fasteners and form a series connection. At the two ends of the serial connection, a connector cable is attached. The front of the module consists of the active layer composition. On the back paper, the substrate is directly visible. Photo: pmTUC/Bystrik Trnovec

The technology known as 3PV (3PV stands for printed paper photovoltaics) uses conventional printing methods and standard substrates, like those used for magazines, posters or packaging. Special inks with electrical properties form the necessary structures on paper, which ensure that electricity is generated when being exposed to light. Since the employed conventional printing methods, i.e. gravure, flexo and offset printing, are very cost-efficient, the printed solar panels shall generate much cheaper electricity in comparison to conventional solar cells.

Prof. Dr. Arved Hübler from the Institute for Print and Media Technology at Chemnitz University of Technology, who is working together with his research team on the 3PV technology for more than three years now, speaks of a paradigm shift in solar technology. His vision for the future is that common printing houses around the world could produce and market 3PV solar panels.

Now the Chemnitz-based researchers have published their results in the journal Advanced Energy Materials. Hübler and his team Tino Zillger, Bystrik Trnovec Mozzam Ali and Nora Wetzold, who have been supported by colleagues from the University of Würzburg with regard to the characterisation of the cells, report that the cells printed in Chemnitz achieve an energy conversion efficiency of 1.3 percent. The researchers use a new material approach. In a special printing process, naturally oxidised zinc is applied as base electrode. The transparent counter electrode is printed with PEDOT, a conductive polymer. "The materials are constantly optimised and we are confident that the 3PV parameters can be further improved," says Tino Zillger, researcher at the Institute for Print and Media Technology and leader of the project. Even the team of Hübler is a bit surprised that it is already possible to produce very stable 3PV modules with a web printing press in the laboratory of the Institute for Print and Media Technology. "Our long experience in the field of printed electronics pays well here," says the head of the chair Print Media Technology.

Hübler assumes that all in all paper solar cells could have the edge over the current technological state of the art due to the efficient production and lower material costs. The aim of further research is to increase the efficiency to more than five percent in order to ensure that a 3PV module is economically attractive despite a life time of less than one year. "In nature we find a model for this strategy: even green leaves only have a moderate energy conversion efficiency of four to seven percent and a life time of less than one year. Nevertheless, this approach is obviously successful," explains Hübler.

The vision of being able to contribute to the overall energy supply with the help of paper solar panels is only one field of application. Researchers at Chemnitz University of Technology have already shown that it is also possible to drive small electrical devices with these paper solar cells. This opens up the possibility to supply mobile devices with “paper power” in a simple and self-sustaining way. Intelligent packaging, for instance, could include many additional features, ranging from displays to sensors. Handling of the paper solar cells can be very simple. Tino Zillger shows a possible solution with 3PV modules manufactured at the Institute for Print and Media Technology: The paper strips can be connected with the help of commercial snap fasteners. Immediately, an electrical current flows. After use, the paper modules can be recycled like any other waste paper. According to Hübler it is, thus, not only possible to generate renewable energy, but also the solar cell itself is made from renewable resources and is consequently renewable.

The publication is available online: Arved Hübler, Bystrik Trnovec, Tino Zillger, Mozzam Ali, Nora Wetzold, Markus Mingebach, Alexander Wagenpfahl, Carsten Deibel, Vladimir Dyakonov: Printed paper photovoltaic cells; Adv. Energy Mat. in print, pre-published at: http://onlinelibrary.wiley.com/doi/10.1002/aenm.201100394/abstract

More information can be found at http://www.pppv.de and is provided by Prof. Dr. Arved Hübler, phone 0371 531-32364, Email pmhuebler@mb.tu-chemnitz.de.

Katharina Thehos | Technische Universität Chemnitz
Further information:
http://www.pppv.de
http://www.tu-chemnitz.de

More articles from Power and Electrical Engineering:

nachricht Energy hybrid: Battery meets super capacitor
01.12.2016 | Technische Universität Graz

nachricht Tailor-Made Membranes for the Environment
30.11.2016 | Forschungszentrum Jülich

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>