Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Printed Electronics: A Multi-Touch Sensor Customizable with Scissors

08.10.2013
If a pair of trousers is too long, it is cut shorter. A board that does not fit into a bookcase is sawed to the right length.

People often customize the size and shape of materials like textiles and wood without turning to specialists like tailors or carpenters. In the future this should be possible with electronics, according to the vision of computer scientists from Saarbrücken.


By customizing and pasting the new sensor you can make every surface interactive.
Saarland University

Together with researchers from the MIT Media Lab, they developed a printable multi-touch sensor whose shape and size everybody can alter. A new circuit layout makes it robust against cuts, damage, and removed areas.

Today the researchers are presenting their work at the conference “User Interface and Technology” (UIST) in St. Andrews, Scotland.

“Imagine a kid takes our sensor film and cuts out a flower with stem and leaves. If you touch the blossom with a finger, you hear the buzzing of a bumblebee”, Jürgen Steimle says. He reports that programs and apps are easily imaginable to help parents connect touching a sensor film with the suitable sound effect. Steimle, 33, has a doctoral degree in computer science and is doing research at the Max-Planck Institute for Informatics. He also heads the Embodied Interaction research group at the Cluster of Excellence on Multimodal Computing and Interaction.

Simon Olberding is the doctoral candidate and the lead developer of the new sensor. He sees a further application of the new technology in so-called interactive walls used for discussions and brainstorming. “So far, such a wall frays and scuffs quickly as we hammer nails into it, stick notes or posters on it, and damage it while removing them. By customizing and pasting on our new sensor you can make every surface interactive no matter if it is the wristband of a watch, a cloth on a trade fair table, or wallpaper”, Olberding says.

As basic technology the scientists use so-called “printed electronics”. This term summarizes electrical components and devices which are printed. The approach is similar to that of inkjet printers. Instead of printing with normal ink, electrically-functional electronic ink is printed on flexible, thin films (so-called substrates). “The factory costs are so low that printing our DIN A4 film on our special printer in the lab costs us about one US dollar”, Steimle says.

But you need more than printed electronics to make a sensor robust against cuts, damage, and removed areas. So far the circuit layout of a multi-touch sensor has been similar to graph paper. The wires run horizontally, vertically, and parallel to each other. At the intersection of one parallel and one horizontal layer you find the touch-sensitive electrodes. Via the wires they are connected to a controller. This type of layout requires only a minimal number of wires, but is not robust. Since each wire addresses several electrodes, a small cut has a huge effect: many electrodes become unusable and possibly large sensor areas do not work anymore. “It was not easy to find an alternative layout, robust enough for our approach”, Olberding says. They took their inspiration from nature, looking at the human nerve system and fungal root networks, and thus came up with two basic layouts. The so-called star topology has the controller in the center. It is connected to every electrode separately. The so-called tree topology also has the controller in its center connected to each electrode separately. But the wires are bundled similarly to a tree structure. They all run through a vertical line in the middle and then branch off to reach their electrodes.

The scientists found out that the star topology supports often-used basic forms like triangles, rectangles, or ovals best. Furthermore, it is suitable for shapes commonly used for crafts, like stars, clouds, or hearts. In contrast, with the tree topology it is possible to cut out whole areas. The researchers were also able to combine both layouts in a space-saving way, so that the sensor supports all basic forms.

“We assume that printed sensors will be so inexpensive that multi-touch sensing capability will become an inherent part of the material. Users can take it to create interactive applications or just to write on it”, Steimle explains. This vision is not so far away, as a prediction from the “Organic and Printed Electronic Association” shows. The international industry association forecast that flexible consumer electronics will be available for end-users between the years 2017 and 2020.

Further information:

Project:
http://embodied.mpi-inf.mpg.de/research/cuttable-multi-touch-sensor/
Publication:
Simon Olberding, Nan-Wei Gong, John Tiab, Joseph A. Paradiso and Jürgen Steimle. A Cuttable Multi-touch Sensor. In Proc. UIST 2013 (Full Paper). http://embodied.mpi-inf.mpg.de/files/2012/11/ACuttableMultiTouchSensor.pdf
Video:
http://www.youtube.com/watch?v=wnTG_ZTYdVk
Figure:
www.uni-saarland.de/pressefotos
Further questions are answered by:
Dr. Jürgen Steimle
Max Planck Institute for Informatics
Email: jsteimle@mpi-inf.mpg.de
Simon Olberding
Max Planck Institute for Informatics
Email: solberdi@mpi-inf.mpg.de
Editor:
Gordon Bolduan
Science Communication
Competence Center of Computer Science Saarland
Email: bolduan@mmci.uni-saarland.de
Tel: +49 681 302 70741

Friederike Meyer zu Tittingdorf | idw
Further information:
http://www.uni-saarland.de

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>