Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Predicting Wave Power Could Double Marine-Based Energy

11.09.2012
Forecasting wave height one second in advance optimizes energy collection, says a TAU researcher
In the search for alternative energy, scientists have focused on the sun and the wind. There is also tremendous potential in harnessing the power of the ocean's waves, but marine energy presents specific challenges that have made it a less promising resource.

It's a challenge to tune Wave Energy Converters (WECs) so that they are able to harvest the maximum energy from waves, which differ in terms of their size and force. This unpredictability leads to intermittent energy collection. WECs also need to withstand the harsh winds and storms to which they are subjected in the open sea — storms which can destroy the devices.

Now, working with a team at the University of Exeter in the UK, Prof. George Weiss of Tel Aviv University's School of Electrical Engineering and Center for Renewable Energy has developed a control algorithm that, when used in conjunction with previously-developed wave prediction technology, helps WECs calculate the correct amount of force needed to collect the maximum energy possible, allowing the device to respond to each wave individually. The system, which was recently published in the journal Renewable Energy, doubles the energy previously collected by WECs.

Calculating force

WECs, Prof. Weiss explains, have two parts — a fixed or weighted lower part, possibly attached to the ocean floor, and an upper section that moves up and down based on the motion of the water. The device collects energy generated by the resistance force between the parts. Unlike wind turbines or solar panels, which collect as much or as little energy as comes their way, WECs need to adjust themselves to each oncoming wave to function properly, which requires knowledge of the characteristics of the incoming wave.

If there is zero resistance between the two parts of the WEC, the upper part moves freely with the waves, and no electricity is generated, Prof. Weiss explains. On the other hand, where there is so much resistance that it suppresses movement, the device turns rigid. At both of these extremes, no energy is produced. The ideal is a happy medium based on measurements of the incoming wave.

Prof. Weiss and his fellow researchers developed a control algorithm that is responsible for setting the correct resistance force for the WEC based on the predicted wave information. A processor attached to the WEC runs the algorithm five times per second in order to determine and then implement an optimal mechanical response to the coming waves.

In the lab, the researchers have run simulations using wave data gathered from the ocean. Combining prediction technology with their new algorithm, energy collection was improved by 100 percent —double the amount of energy that WECs had collected previously.

One second warning

The most important piece of information is the height of the wave, says Prof. Weiss, which the WEC needs to know in advance in order to prepare. "You would think that the longer the WEC knows the wave height in advance, the better, but in a surprising finding, it turns out that a one-second prediction horizon is enough," he says, noting that a longer prediction time does not actually improve the energy harvest.

Their findings could not only help to improve the functioning of the WECs that are already in use in places such as the East Coast of the US and the Atlantic Coast of Spain, but could help the technology become more competitive. Currently, marine energy is fifty times more expensive to collect than the market price for the energy itself — as solar and wind energy were in their infancy, says Prof. Weiss. But with the improvement of WEC structure, performance, and mass production, it could become commercially viable. "There is a lot of untapped energy in the ocean," he adds.

George Hunka | EurekAlert!
Further information:
http://www.aftau.org

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>