Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Predicting Wave Power Could Double Marine-Based Energy

11.09.2012
Forecasting wave height one second in advance optimizes energy collection, says a TAU researcher
In the search for alternative energy, scientists have focused on the sun and the wind. There is also tremendous potential in harnessing the power of the ocean's waves, but marine energy presents specific challenges that have made it a less promising resource.

It's a challenge to tune Wave Energy Converters (WECs) so that they are able to harvest the maximum energy from waves, which differ in terms of their size and force. This unpredictability leads to intermittent energy collection. WECs also need to withstand the harsh winds and storms to which they are subjected in the open sea — storms which can destroy the devices.

Now, working with a team at the University of Exeter in the UK, Prof. George Weiss of Tel Aviv University's School of Electrical Engineering and Center for Renewable Energy has developed a control algorithm that, when used in conjunction with previously-developed wave prediction technology, helps WECs calculate the correct amount of force needed to collect the maximum energy possible, allowing the device to respond to each wave individually. The system, which was recently published in the journal Renewable Energy, doubles the energy previously collected by WECs.

Calculating force

WECs, Prof. Weiss explains, have two parts — a fixed or weighted lower part, possibly attached to the ocean floor, and an upper section that moves up and down based on the motion of the water. The device collects energy generated by the resistance force between the parts. Unlike wind turbines or solar panels, which collect as much or as little energy as comes their way, WECs need to adjust themselves to each oncoming wave to function properly, which requires knowledge of the characteristics of the incoming wave.

If there is zero resistance between the two parts of the WEC, the upper part moves freely with the waves, and no electricity is generated, Prof. Weiss explains. On the other hand, where there is so much resistance that it suppresses movement, the device turns rigid. At both of these extremes, no energy is produced. The ideal is a happy medium based on measurements of the incoming wave.

Prof. Weiss and his fellow researchers developed a control algorithm that is responsible for setting the correct resistance force for the WEC based on the predicted wave information. A processor attached to the WEC runs the algorithm five times per second in order to determine and then implement an optimal mechanical response to the coming waves.

In the lab, the researchers have run simulations using wave data gathered from the ocean. Combining prediction technology with their new algorithm, energy collection was improved by 100 percent —double the amount of energy that WECs had collected previously.

One second warning

The most important piece of information is the height of the wave, says Prof. Weiss, which the WEC needs to know in advance in order to prepare. "You would think that the longer the WEC knows the wave height in advance, the better, but in a surprising finding, it turns out that a one-second prediction horizon is enough," he says, noting that a longer prediction time does not actually improve the energy harvest.

Their findings could not only help to improve the functioning of the WECs that are already in use in places such as the East Coast of the US and the Atlantic Coast of Spain, but could help the technology become more competitive. Currently, marine energy is fifty times more expensive to collect than the market price for the energy itself — as solar and wind energy were in their infancy, says Prof. Weiss. But with the improvement of WEC structure, performance, and mass production, it could become commercially viable. "There is a lot of untapped energy in the ocean," he adds.

George Hunka | EurekAlert!
Further information:
http://www.aftau.org

More articles from Power and Electrical Engineering:

nachricht Perovskite-silicon solar cell research collaboration hits 25.2% efficiency
15.06.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Second heat source optimises heat pump system
12.06.2018 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>