Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PRACE – the mobile production assistant

25.03.2014

As part of the EU research project PRACE, scientists from Fraunhofer IPA have collaborated with partners from industry and research to develop a teachable, two-armed robot system.

The concept follows the master-apprentice principle: learning by demonstration. The aim is to enable the worker to quickly and easily impart new skills to the mobile production assistant simply by demonstrating the relevant activities. At Automatica 2014, Fraunhofer IPA will show how the PRACE demonstrator works.


The PRACE demonstrator palletizes metal components for subsequent coating.

source: Fraunhofer IPA

The goal of the EU research project PRACE is to develop a teachable, two-armed robot system for the partial automation of small batch production processes. The concept is based on the principle of learning by demonstration. The mobile production assistant learns from the worker how to carry out certain activities by itself. Similarly to a master-apprentice relationship, the worker shows the robot how to carry out the relevant tasks.

The mobile production assistant follows what the worker does and categorizes this new knowledge in its knowledge database. When the robot applies its newly acquired skill, the worker corrects and refines the robot’s actions as required until the desired result is achieved. At little expense, PRACE can be intuitively taught and quickly used for a variety of handling and manipulation tasks. This increases flexibility, cuts costs and makes the system especially attractive for small and medium-sized enterprises.

Safe and mobile two-armed manipulation for every user

For shorter set-up times, PRACE dispenses with protection systems and must therefore be operated at a lower speed of the individual robot arms. The two-armed robot provides a normal work output, while the combination of two-armed manipulation and mobile platform makes it possible for the output to be increased and for new applications in mass production to be cost-effectively automated. This is currently being trialled in production at Bosch as part of the PRACE project. Modular construction also allows the use of individual robot components and their combination with other systems.

The demonstrator from the PRACE project is based on Fraunhofer IPA’s rob@work 3 platform, ABB’s “dual-arm concept robot” and a tracking system from Magellium and DTI. In addition, the scientists from Fraunhofer IPA and Lund University are integrating a control for mobile manipulation to enable the planning and implementation of collision-free manipulation by both arms without the need for complex programming by the end user. Also, the robot system employs safe navigation methods to increase the workspace of compact manipulators: PRACE is capable of responding in real-time to dynamic changes in its environment in order to avoid collisions. “We have many years of experience in software development for the manipulation and navigation of autonomous systems. Fraunhofer IPA is focusing in particular on the development of components for localization and path planning in dynamic environments,” says Alexander Bubeck, Project Manager in the Robot and Assistive Systems department.

PRACE demonstrator in action
At Automatica 2014, PRACE will be used to carry out the preparations for a coating process: different parts for coating require simple and flexible programming of the mobile two-armed robot system. The process involves the following three steps:

• Demonstration of the new task:
The tracking system follows the movement of a teach-in tool used by the worker to demonstrate the desired motions of the system. There is also a database of robot actions (such as the recognition of components). A simulation is displayed during the teach-in process to show the worker the movements of the “robot apprentice” in real-time.

• Refinement phase:
After the teach-in phase, it may be the case that the PRACE demonstrator is incapable of executing the newly learned motion sequence to the required standard. In individual steps, therefore, the worker must further refine the robot’s motions using a tool-integrated camera system, force regulation or manual intervention to ensure that the robot is also able to carry out delicate operations, such as introducing a needle into a holder.

• Automated execution:
The new robot application can then be executed without intervention by the worker. The robot system autonomously improves its execution of the motions by, for example, using the second manipulator for execution or by shortening the travel trajectories.

PRACE stands for “Productive Robot Apprentice” and is an EU-funded research project (grant agreement no. 285380) as well as part of the 7th EU Framework Programme.

Partners in the project:
Fraunhofer IPA (Germany), Robert Bosch GmbH (Germany), Teknologisk Institut (Denmark), Lund University (Sweden), Magellium SAS (France) and ABB AG (Germany).

More at Automatica – 6th International Trade Fair for Automation and Mechatronics
3 to 6 June 2014
New Trade Fair Centre Munich
Hall A4 | Stand 530

Contact
Dipl.-Ing. Alexander Bubeck, phone +49 711 970-1314, alexander.bubeck@ipa.fraunhofer.de

Weitere Informationen:

http://www.automatica-munich.com
http://prace-fp7.eu/
http://www.ipa.fraunhofer.de

Jörg Walz | Fraunhofer-Institut

Further reports about: Automatisierung IPA PRACE Produktionstechnik Trade activities individual motions programming

More articles from Power and Electrical Engineering:

nachricht Thermo-Optical Measuring method (TOM) could save several million tons of CO2 in coal-fired plants
25.05.2016 | Fraunhofer-Institut für Silicatforschung ISC

nachricht Atomic precision: technologies for the next-but-one generation of microchips
24.05.2016 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

11 million Euros for research into magnetic field sensors for medical diagnostics

27.05.2016 | Awards Funding

Fungi – a promising source of chemical diversity

27.05.2016 | Life Sciences

New Model of T Cell Activation

27.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>