Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PRACE – the mobile production assistant

25.03.2014

As part of the EU research project PRACE, scientists from Fraunhofer IPA have collaborated with partners from industry and research to develop a teachable, two-armed robot system.

The concept follows the master-apprentice principle: learning by demonstration. The aim is to enable the worker to quickly and easily impart new skills to the mobile production assistant simply by demonstrating the relevant activities. At Automatica 2014, Fraunhofer IPA will show how the PRACE demonstrator works.


The PRACE demonstrator palletizes metal components for subsequent coating.

source: Fraunhofer IPA

The goal of the EU research project PRACE is to develop a teachable, two-armed robot system for the partial automation of small batch production processes. The concept is based on the principle of learning by demonstration. The mobile production assistant learns from the worker how to carry out certain activities by itself. Similarly to a master-apprentice relationship, the worker shows the robot how to carry out the relevant tasks.

The mobile production assistant follows what the worker does and categorizes this new knowledge in its knowledge database. When the robot applies its newly acquired skill, the worker corrects and refines the robot’s actions as required until the desired result is achieved. At little expense, PRACE can be intuitively taught and quickly used for a variety of handling and manipulation tasks. This increases flexibility, cuts costs and makes the system especially attractive for small and medium-sized enterprises.

Safe and mobile two-armed manipulation for every user

For shorter set-up times, PRACE dispenses with protection systems and must therefore be operated at a lower speed of the individual robot arms. The two-armed robot provides a normal work output, while the combination of two-armed manipulation and mobile platform makes it possible for the output to be increased and for new applications in mass production to be cost-effectively automated. This is currently being trialled in production at Bosch as part of the PRACE project. Modular construction also allows the use of individual robot components and their combination with other systems.

The demonstrator from the PRACE project is based on Fraunhofer IPA’s rob@work 3 platform, ABB’s “dual-arm concept robot” and a tracking system from Magellium and DTI. In addition, the scientists from Fraunhofer IPA and Lund University are integrating a control for mobile manipulation to enable the planning and implementation of collision-free manipulation by both arms without the need for complex programming by the end user. Also, the robot system employs safe navigation methods to increase the workspace of compact manipulators: PRACE is capable of responding in real-time to dynamic changes in its environment in order to avoid collisions. “We have many years of experience in software development for the manipulation and navigation of autonomous systems. Fraunhofer IPA is focusing in particular on the development of components for localization and path planning in dynamic environments,” says Alexander Bubeck, Project Manager in the Robot and Assistive Systems department.

PRACE demonstrator in action
At Automatica 2014, PRACE will be used to carry out the preparations for a coating process: different parts for coating require simple and flexible programming of the mobile two-armed robot system. The process involves the following three steps:

• Demonstration of the new task:
The tracking system follows the movement of a teach-in tool used by the worker to demonstrate the desired motions of the system. There is also a database of robot actions (such as the recognition of components). A simulation is displayed during the teach-in process to show the worker the movements of the “robot apprentice” in real-time.

• Refinement phase:
After the teach-in phase, it may be the case that the PRACE demonstrator is incapable of executing the newly learned motion sequence to the required standard. In individual steps, therefore, the worker must further refine the robot’s motions using a tool-integrated camera system, force regulation or manual intervention to ensure that the robot is also able to carry out delicate operations, such as introducing a needle into a holder.

• Automated execution:
The new robot application can then be executed without intervention by the worker. The robot system autonomously improves its execution of the motions by, for example, using the second manipulator for execution or by shortening the travel trajectories.

PRACE stands for “Productive Robot Apprentice” and is an EU-funded research project (grant agreement no. 285380) as well as part of the 7th EU Framework Programme.

Partners in the project:
Fraunhofer IPA (Germany), Robert Bosch GmbH (Germany), Teknologisk Institut (Denmark), Lund University (Sweden), Magellium SAS (France) and ABB AG (Germany).

More at Automatica – 6th International Trade Fair for Automation and Mechatronics
3 to 6 June 2014
New Trade Fair Centre Munich
Hall A4 | Stand 530

Contact
Dipl.-Ing. Alexander Bubeck, phone +49 711 970-1314, alexander.bubeck@ipa.fraunhofer.de

Weitere Informationen:

http://www.automatica-munich.com
http://prace-fp7.eu/
http://www.ipa.fraunhofer.de

Jörg Walz | Fraunhofer-Institut

Further reports about: Automatisierung IPA PRACE Produktionstechnik Trade activities individual motions programming

More articles from Power and Electrical Engineering:

nachricht Did you know that Heraeus PID lamps have been used in the measurement of air quality at the London airport?
02.05.2016 | Heraeus Noblelight GmbH

nachricht Could off-grid electricity systems accelerate energy access?
26.04.2016 | International Institute for Applied Systems Analysis (IIASA)

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

Im Focus: New world record for fullerene-free polymer solar cells

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences (CAS). This work is about avoiding costly and unstable fullerenes.

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Identifying drug targets for leukaemia

02.05.2016 | Life Sciences

Clay nanotube-biopolymer composite scaffolds for tissue engineering

02.05.2016 | Materials Sciences

NASA's Fermi Telescope helps link cosmic neutrino to blazar blast

02.05.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>