Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PRACE – the mobile production assistant

25.03.2014

As part of the EU research project PRACE, scientists from Fraunhofer IPA have collaborated with partners from industry and research to develop a teachable, two-armed robot system.

The concept follows the master-apprentice principle: learning by demonstration. The aim is to enable the worker to quickly and easily impart new skills to the mobile production assistant simply by demonstrating the relevant activities. At Automatica 2014, Fraunhofer IPA will show how the PRACE demonstrator works.


The PRACE demonstrator palletizes metal components for subsequent coating.

source: Fraunhofer IPA

The goal of the EU research project PRACE is to develop a teachable, two-armed robot system for the partial automation of small batch production processes. The concept is based on the principle of learning by demonstration. The mobile production assistant learns from the worker how to carry out certain activities by itself. Similarly to a master-apprentice relationship, the worker shows the robot how to carry out the relevant tasks.

The mobile production assistant follows what the worker does and categorizes this new knowledge in its knowledge database. When the robot applies its newly acquired skill, the worker corrects and refines the robot’s actions as required until the desired result is achieved. At little expense, PRACE can be intuitively taught and quickly used for a variety of handling and manipulation tasks. This increases flexibility, cuts costs and makes the system especially attractive for small and medium-sized enterprises.

Safe and mobile two-armed manipulation for every user

For shorter set-up times, PRACE dispenses with protection systems and must therefore be operated at a lower speed of the individual robot arms. The two-armed robot provides a normal work output, while the combination of two-armed manipulation and mobile platform makes it possible for the output to be increased and for new applications in mass production to be cost-effectively automated. This is currently being trialled in production at Bosch as part of the PRACE project. Modular construction also allows the use of individual robot components and their combination with other systems.

The demonstrator from the PRACE project is based on Fraunhofer IPA’s rob@work 3 platform, ABB’s “dual-arm concept robot” and a tracking system from Magellium and DTI. In addition, the scientists from Fraunhofer IPA and Lund University are integrating a control for mobile manipulation to enable the planning and implementation of collision-free manipulation by both arms without the need for complex programming by the end user. Also, the robot system employs safe navigation methods to increase the workspace of compact manipulators: PRACE is capable of responding in real-time to dynamic changes in its environment in order to avoid collisions. “We have many years of experience in software development for the manipulation and navigation of autonomous systems. Fraunhofer IPA is focusing in particular on the development of components for localization and path planning in dynamic environments,” says Alexander Bubeck, Project Manager in the Robot and Assistive Systems department.

PRACE demonstrator in action
At Automatica 2014, PRACE will be used to carry out the preparations for a coating process: different parts for coating require simple and flexible programming of the mobile two-armed robot system. The process involves the following three steps:

• Demonstration of the new task:
The tracking system follows the movement of a teach-in tool used by the worker to demonstrate the desired motions of the system. There is also a database of robot actions (such as the recognition of components). A simulation is displayed during the teach-in process to show the worker the movements of the “robot apprentice” in real-time.

• Refinement phase:
After the teach-in phase, it may be the case that the PRACE demonstrator is incapable of executing the newly learned motion sequence to the required standard. In individual steps, therefore, the worker must further refine the robot’s motions using a tool-integrated camera system, force regulation or manual intervention to ensure that the robot is also able to carry out delicate operations, such as introducing a needle into a holder.

• Automated execution:
The new robot application can then be executed without intervention by the worker. The robot system autonomously improves its execution of the motions by, for example, using the second manipulator for execution or by shortening the travel trajectories.

PRACE stands for “Productive Robot Apprentice” and is an EU-funded research project (grant agreement no. 285380) as well as part of the 7th EU Framework Programme.

Partners in the project:
Fraunhofer IPA (Germany), Robert Bosch GmbH (Germany), Teknologisk Institut (Denmark), Lund University (Sweden), Magellium SAS (France) and ABB AG (Germany).

More at Automatica – 6th International Trade Fair for Automation and Mechatronics
3 to 6 June 2014
New Trade Fair Centre Munich
Hall A4 | Stand 530

Contact
Dipl.-Ing. Alexander Bubeck, phone +49 711 970-1314, alexander.bubeck@ipa.fraunhofer.de

Weitere Informationen:

http://www.automatica-munich.com
http://prace-fp7.eu/
http://www.ipa.fraunhofer.de

Jörg Walz | Fraunhofer-Institut

Further reports about: Automatisierung IPA PRACE Produktionstechnik Trade activities individual motions programming

More articles from Power and Electrical Engineering:

nachricht Engineers program tiny robots to move, think like insects
15.12.2017 | Cornell University

nachricht Electromagnetic water cloak eliminates drag and wake
12.12.2017 | Duke University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>