Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PowerNap plan could save 75 percent of data center energy

09.03.2009
Putting idle servers to sleep when they're not in use is part of University of Michigan researchers' plan to save up to 75 percent of the energy that power-hungry computer data centers consume.

Data centers, central to the nation's cyberinfrastructure, house computing, networking and storage equipment. Each time you make an ATM withdrawal, search the Internet or make a cell phone call, your request is routed through a data center.

Thomas Wenisch, assistant professor in the Department of Electrical Engineering and Computer Science, and students David Meisner and Brian Gold will present a paper about improving the energy efficiency of data center computer systems on March 10 at the International Conference on Architectural Support for Programming Languages and Operating Systems in Washington, D.C.

Wenisch and the students analyzed data center workloads and power consumption and used mathematical modeling to develop their approach.

The approach includes PowerNap, the plan to put idle servers to sleep, and RAILS, a more efficient power supplying technique. (RAILS stands for Redundant Array for Inexpensive Load Sharing.)

The Environmental Protection Agency expects the energy consumption of the nation's data centers to exceed 100 billion kWh by 2011, for an annual electricity cost of $7.4 billion. Those figures are about twice what they were in 2006, when data centers already drew more electricity than 5.8 million U.S. households.

Data centers waste most of the energy they draw. The facilities are inefficient because they must be ready for peak processing demands much higher than the average demand.

"For the typical industrial data center, the average utilization is 20 to 30 percent. The computers are spending about four-fifths of their time doing nothing," Wenisch said. "And the way we build these computers today, they're still using 60 percent of peak power even when they're doing nothing."

Techniques employed today such as dynamic frequency and voltage scaling don't do enough to conserve power, the researchers say. Instead, servers could sleep periodically like ordinary laptops.

They would have to slumber and wake exceedingly fast, Wenisch says. His detailed analysis of 600 servers illustrates the sporadic and sparse demands on data center servers. Their average idle period is mere hundreds of milliseconds. Their average busy period is even shorter, at tens of milliseconds. A millisecond is one-thousandth of a second.

While PowerNap would require a new operating system to coordinate the instantaneous sleeping and waking, most of the other technologies that would make this possible already exist, Wenisch says.

"There aren't really technological barriers to achieving this," Wenisch said. "The individual components know how to go to sleep fast. Engineers have developed that technology for laptops and smart phones. But the pieces haven't been used in servers where you don't have a user closing the lid. The components are out there, but the system needs to be redesigned."

While the computer parts might not be hard to find, the power supply would need to be overhauled for PowerNap to work properly, the researchers say. Their new RAILS technique addresses this problem.

Today's power supply technique for stacking "blade-based" servers connects about 16 computers to a handful of 2,250-watt power supplies. The arrangement is inefficient unless the machines are running full steam.

To cut down on the power loss, RAILS would replace the one 2,250-watt power supply with a bunch of smaller, 500-watt power supplies. RAILS would be a necessary complement to PowerNap because without it, even sleeping servers would waste energy.

"Together, these approaches can help make data centers green and solve these big energy efficiency challenges," Wenisch said.

This research is funded by the National Science Foundation and Intel. The paper is called "PowerNap: Eliminating Server Idle Power." David Meisner, first author of the paper, is a doctoral student in the U-M division of Computer Science and Engineering. Brian Gold, a co-author of the paper, is a doctoral student in electrical and computer engineering at Carnegie Mellon University.

U-M has filed for patent protection on the technology, and is currently seeking an industry partner to help bring the technology to market.

Simple data center and server initiatives underway at the University of Michigan are reducing computing energy levels by 10 percent, which equals $500,000 annually, says Tim Slottow, U-M executive vice president and chief financial officer.

"Green computing is a wide-open environmental frontier and through Climate Savers Computing Initiative, the University is implementing data center and server green computing best practices. More sophisticated solutions such as PowerNap and RAILS could exponentially increase our energy savings," Slottow said.

Nicole Casal Moore | EurekAlert!
Further information:
http://www.umich.edu

More articles from Power and Electrical Engineering:

nachricht Supersonic waves may help electronics beat the heat
18.05.2018 | DOE/Oak Ridge National Laboratory

nachricht Researchers control the properties of graphene transistors using pressure
17.05.2018 | Columbia University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>