Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PowerNap plan could save 75 percent of data center energy

09.03.2009
Putting idle servers to sleep when they're not in use is part of University of Michigan researchers' plan to save up to 75 percent of the energy that power-hungry computer data centers consume.

Data centers, central to the nation's cyberinfrastructure, house computing, networking and storage equipment. Each time you make an ATM withdrawal, search the Internet or make a cell phone call, your request is routed through a data center.

Thomas Wenisch, assistant professor in the Department of Electrical Engineering and Computer Science, and students David Meisner and Brian Gold will present a paper about improving the energy efficiency of data center computer systems on March 10 at the International Conference on Architectural Support for Programming Languages and Operating Systems in Washington, D.C.

Wenisch and the students analyzed data center workloads and power consumption and used mathematical modeling to develop their approach.

The approach includes PowerNap, the plan to put idle servers to sleep, and RAILS, a more efficient power supplying technique. (RAILS stands for Redundant Array for Inexpensive Load Sharing.)

The Environmental Protection Agency expects the energy consumption of the nation's data centers to exceed 100 billion kWh by 2011, for an annual electricity cost of $7.4 billion. Those figures are about twice what they were in 2006, when data centers already drew more electricity than 5.8 million U.S. households.

Data centers waste most of the energy they draw. The facilities are inefficient because they must be ready for peak processing demands much higher than the average demand.

"For the typical industrial data center, the average utilization is 20 to 30 percent. The computers are spending about four-fifths of their time doing nothing," Wenisch said. "And the way we build these computers today, they're still using 60 percent of peak power even when they're doing nothing."

Techniques employed today such as dynamic frequency and voltage scaling don't do enough to conserve power, the researchers say. Instead, servers could sleep periodically like ordinary laptops.

They would have to slumber and wake exceedingly fast, Wenisch says. His detailed analysis of 600 servers illustrates the sporadic and sparse demands on data center servers. Their average idle period is mere hundreds of milliseconds. Their average busy period is even shorter, at tens of milliseconds. A millisecond is one-thousandth of a second.

While PowerNap would require a new operating system to coordinate the instantaneous sleeping and waking, most of the other technologies that would make this possible already exist, Wenisch says.

"There aren't really technological barriers to achieving this," Wenisch said. "The individual components know how to go to sleep fast. Engineers have developed that technology for laptops and smart phones. But the pieces haven't been used in servers where you don't have a user closing the lid. The components are out there, but the system needs to be redesigned."

While the computer parts might not be hard to find, the power supply would need to be overhauled for PowerNap to work properly, the researchers say. Their new RAILS technique addresses this problem.

Today's power supply technique for stacking "blade-based" servers connects about 16 computers to a handful of 2,250-watt power supplies. The arrangement is inefficient unless the machines are running full steam.

To cut down on the power loss, RAILS would replace the one 2,250-watt power supply with a bunch of smaller, 500-watt power supplies. RAILS would be a necessary complement to PowerNap because without it, even sleeping servers would waste energy.

"Together, these approaches can help make data centers green and solve these big energy efficiency challenges," Wenisch said.

This research is funded by the National Science Foundation and Intel. The paper is called "PowerNap: Eliminating Server Idle Power." David Meisner, first author of the paper, is a doctoral student in the U-M division of Computer Science and Engineering. Brian Gold, a co-author of the paper, is a doctoral student in electrical and computer engineering at Carnegie Mellon University.

U-M has filed for patent protection on the technology, and is currently seeking an industry partner to help bring the technology to market.

Simple data center and server initiatives underway at the University of Michigan are reducing computing energy levels by 10 percent, which equals $500,000 annually, says Tim Slottow, U-M executive vice president and chief financial officer.

"Green computing is a wide-open environmental frontier and through Climate Savers Computing Initiative, the University is implementing data center and server green computing best practices. More sophisticated solutions such as PowerNap and RAILS could exponentially increase our energy savings," Slottow said.

Nicole Casal Moore | EurekAlert!
Further information:
http://www.umich.edu

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>