Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Power from Waste Heat Cuts Costs and Emissions

A new development from Siemens makes it possible for operators of electric arc furnaces to obtain electricity from hot exhaust gases.

Around 20 percent of the electricity required to melt steel scrap could be recovered with the method, according to a report in the latest issue of the research magazine "Pictures of the Future".

Up until now, it has been very difficult to carry out such a process because of temperature and gas-volume fluctuations. Siemens therefore developed a salt storage unit that acts as an energy buffer between a steel furnace and a turbine. The first pilot facility for the system went into operation in the German state of Thuringia in mid-April 2012; the first system product is scheduled to be manufactured in 2013.

Electric arc furnaces melt steel scrap under arcs heated with high-voltage electricity to a temperature of approximately 3,500 degrees Celsius. Such a unit requires around 370 kilowatt-hours of energy per ton of steel produced. The exhaust gases generated in the process can get as hot as 1,700 degrees Celsius. Previously attempted approaches for generating electricity from the gases failed due to fluctuations in gas temperatures and volumes, as steam turbines require a continual flow of steam in a very narrow range of temperatures.

The solution here was taken from the solar-thermal sector - more specifically from Siemens VAI Metals, which uses salt storage units like those employed in such power plants. Here, experts extract heat from the exhaust gas and the salt mixture heats up to around 450 degrees Celsius. Water flows through the hot salt and the resulting steam is used to drive a turbine. The high salt temperature gives the process an efficiency rating of 24 percent, which is greater than that of the second possible option for generating electricity in electric arc furnaces. In this alternative option, steam is produced from the exhaust gas and then stored temporarily in pressurized boilers. However, salt storage units are not only cheaper than such boilers but also safer to operate.

The new solution recovers around 20 percent of the electricity used to run the furnace, which means it also lowers carbon dioxide (CO2) emissions - according to the power mix - by approximately 40 kilograms per ton of steel produced. Given a typical furnace capacity of 120 tons, this results in an annual CO2 reduction of around 30,000 tons. That, in turn, translates into up to five million euros in plant operator savings on electricity and CO2 certificates per year.

Dr. Norbert Aschenbrenner | Siemens InnovationNews
Further information:

More articles from Power and Electrical Engineering:

nachricht Fluorescent holography: Upending the world of biological imaging
25.10.2016 | Colorado State University

nachricht Did you know that infrared heating is an essential part of automotive manufacture?
25.10.2016 | Heraeus Noblelight GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

3-D-printed structures shrink when heated

26.10.2016 | Materials Sciences

Indian roadside refuse fires produce toxic rainbow

26.10.2016 | Health and Medicine

First results of NSTX-U research operations

26.10.2016 | Physics and Astronomy

More VideoLinks >>>