Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The potential of straw for the energy mix has been underestimated. Study: Straw could supply energy to several millions of house

21.10.2013
Straw from agriculture could play an important role in the future energy mix for Germany. Up until now it has been underutilised as a biomass residue and waste material.

These were the conclusions of a study conducted by the TLL (Thueringian regional institute for agriculture), the DBFZ (German biomass research center) and the Helmholtz Center for Environmental Research (UFZ). According to them, from a total of 30 million tons of cereal straw produced annually in Germany, between 8 and 13 million tons of it could be used sustainably for energy or fuel production.

This potential could for example provide 1.7 to 2.8 million average households with electricity and at the same time 2.8 to 4.5 million households with heating. These results highlight the potential contribution of straw to renewable sources of energy, scientists state in the peer-reviewed scientific journal Applied Energy.

For their respective study, scientists analysed the development of residual substances resulting from German agriculture. Accounting for 58 per cent, straw can be regarded as the most important resource, and yet so far it has hardly been used for energy production. From 1950 to 2000 there was a noticeable rise in the cultivation of winter wheat, rye and winter barley in Germany which then remained relatively constant. To remove any bias from weather fluctuations, the average values were taken from 1999, 2003 and 2007. On average, approx. 30 megatons of cereal straw per year were produced in these years. Due to the fact that not all parts of the straw can be used and the fact that straw also plays an important role as bedding in livestock farming, only about half of these 30 megatons are actually available in the end.

Sustainable use
It must be taken into consideration that cereal straw plays an important role in the humus balance of soils. For this reason some of the straw must be left scattered on the agricultural land to prevent nutrients from being permanently extracted from the soil. To calculate the humus balance of soils three different methods of calculation were tested by the team of scientists. Depending upon the method of calculation used, 8, 10 or 13 megatons of straw can be used sustainably every year for energy production - i.e. without causing any disadvantages to the soils or other forms of utilisation. "To our knowledge this is the first time that a study like this has been conducted for an EU country, demonstrating the potential of straw for a truly sustainable energy use, while taking into account the humus balance", stresses Prof. Daniela Thraen, scientist at the DBFZ and the UFZ.
Greenhouse gas balances depend on utilisation forms
It can thus be said that straw can contribute to the future energy mix. The degree to which it will contribute to greenhouse gas reduction however will depend on how the straw is used. A reduction compared to fossil fuels can be somewhere between 73 and 92 percent when using straw for the generation of heat, combined heat and power generation or as second-generation biofuel production. The different greenhouse gas balances cast a differentiated light on the EU´s goal of covering ten percent of transportation sector's energy use by using biofuels. Once again the study emphasizes how the use of bioenergy needs to take into account various factors. Given the conditions prevalent in Germany, the use of straw in combined heat and power generation would be best for the climate. "Straw should therefore primarily be used in larger district heating stations and/or combined heat and power stations, but technology must be developed for an environmentally-friendly utilisation", stresses Dr. Armin Vetter from TLL, who has been operating a straw-fuelled power station for 17 years.
Role model Denmark
According to the summary of the new study, straw-based energy applications should be developed in Germany in particular in those regions with favourable conditions and appropriate power plants. Even if we wouldn't be spinning straw into gold in the foreseeable future, it would still make an important contribution to the energy turnaround. Looking across the border shows us what is feasible when the course is optimally set: currently Denmark is still considered to be the world leader in straw-based energy applications. 15 years ago a master plan was introduced there, ensuring in the meantime in Germany´s northern neighbouring country that over 5 billion kilowatt hours of energy per year is generated from straw.

Tilo Arnhold

Publications:
Christian Weiser, Vanessa Zeller, Frank Reinicke, Bernhard Wagner, Stefan Majer, Armin Vetter, Daniela Thraen (2013): Integrated assessment of sustainable cereal straw potential and different straw-based energy applications in Germany. Applied Energy, Available online 30 July 2013
http://dx.doi.org/10.1016/j.apenergy.2013.07.016
The study was funded by the BMU - the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety within the program „Promoting projects to optimise biomass energy use".
Conference:
Five years BMU funding program "Promoting projects to optimise biomass energy!" 14. - 15.11.2013 in Leipzig
http://www.energetische-biomassenutzung.de/index.php?id=448

Further information:
Christian Weisser, Armin Vetter
TLL (Thueringian regional institute for agriculture) - Thueringian center for renewable resources in Dornburg/Saale
Tel.: +49-36427-868-133
http://www.thueringen.de/de/tll/
Prof. Daniela Thrän
Helmholtz Center for Environmental Research (UFZ) / German biomass research center (DBFZ)
Tel.: ++49 341 2434 435
http://www.ufz.de/index.php?de=21081
or from
Tilo Arnhold, Susanne Hufe (UFZ Press)
Tel.: +49-341-235-1635, -1630
http://www.ufz.de/index.php?de=640
and
Paul Trainer (DBFZ Press)
Tel.: +49-341-2434-437
http://www.dbfz.de/web/presse.html
Other Links:
BMU-funding program "Biomass energy use"
http://www.energetische-biomassenutzung.de/de/home.html
Basic information on the sustainable use of residual substances from agriculture for generating energy (Series of articles within the BMU-funding program „ Biomass energy use"):
http://www.energetische-biomassenutzung.de/fileadmin/user_upload/Downloads/Ver%C3%B6ffentlichungen/02_Basisinformationen_Reststoffe_web.pdf
The potential of straw in the federal states and administrative districts in Germany:

http://strohpotenziale.dbfz.de/

TLL (Thueringian regional institute for agriculture) is responsible as a specialized authority on agriculture for the sovereignty and enforcement of agricultural law. Beyond that, it offers various services as a competence center for agricultural and food production in the form of consultation based on applied and practice-oriented research. The focus thereby is on an efficient and environmentally-friendly production of food-, feed- and non-food-products.

http://www.thueringen.de/de/tll

The DBFZ (German biomass research center) works as a central and independent mastermind in the field of the energetic use of biomass on the question of how limited available biomass resources can contribute sustainably and most efficiently to the existing and above all to a future energy supply. In the context of its research work the DBFZ identifies, develops, follows up, assesses and demonstrates the most promising fields of application for bioenergy and particularly outstanding and positive examples together with partners in research, economics and the community.

http://www.dbfz.de

At the Helmholtz Centre for Environmental Research (UFZ) scientists are interested in the wide-ranging causes and impacts of environmental change. They conduct research on water resources, biodiversity, the impacts of climate change and adaptation strategies, environmental and biotechnologies, bioenergy, the behaviour of chemicals in the environment and their effects on health, modelling and sociological issues. Their guiding motto: our research serves the sustainable use of natural resources and helps towards long-term food and livelihood security in the face of global change. The UFZ has over 1100 employees working in Leipzig, Halle und Magdeburg. It is funded by the federal government, as well as by the State of Saxony and Saxony Anhalt.

http://www.ufz.de/

The Helmholtz Association contributes to finding solutions for large and pressing issues in society, science and the economy through excellence in the following six areas of research: energy, earth and the environment, health, key technologies, structure of matter, transport and aerospace. With almost 35,000 employees and coworkers in 18 research centres and an annual budget of approx. 3.8 billion Euros the Helmholtz Association is the largest scientific organization in Germany. Work is conducted in the tradition of the renowned natural scientist Hermann von Helmholtz (1821-1894). http://www.helmholtz.de/

Tilo Arnhold | UFZ News
Further information:
http://www.ufz.de/index.php?en=32109

More articles from Power and Electrical Engineering:

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Researchers develop environmentally friendly soy air filter
16.01.2017 | Washington State University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>