Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Polycrystalline diamond drill bits open up options for geothermal energy

20.03.2012
30-year-old investment comes full circle

Nearly two-thirds of the oil we use comes from wells drilled using polycrystalline diamond compact (PDC) bits, originally developed nearly 30 years ago to lower the cost of geothermal drilling. Sandia and the U.S. Navy recently brought the technology fullcircle, showing how geothermal drillers might use the original PDC technology, incorporating decades of subsequent improvements by the oil and gas industry.

Sandia and the Navy’s Geothermal Program Office (USN GPO) conducted the Phase One demonstration tests as part of a geothermal resources evaluation at the Chocolate Mountains Aerial Gunnery Range in Imperial Valley, Calif.

Sandia has a long history in geothermal research and drill bit technology development. Three decades ago, Sandia played a large role in developing PDCs for geothermal drilling. That work focused on resolving issues with materials, devising laboratory tests and developing data and design codes that now form the basis of the bit industry. Recently, Sandia received American Recovery and Reinvestment Act (ARRA) funding to improve PDC bits, potentially increasing access to geothermal resources in the continental U.S. by enabling the drilling of deeper, hotter geothermal resources in hard, basement rock formations.

Geothermal drilling more demanding

Because oil and gas drilling is generally less complicated than geothermal drilling, PDCs were first used to drill for oil and gas, said principal investigator David Raymond.

“Oil and gas drilling is normally done in softer and less-fractured rock, resulting in fewer problems with fluid circulation to remove debris and cool the bit,” he said. “Oil and gas drilling also doesn’t usually involve the higher temperatures that geothermal wells exhibit.”

But as the oil and gas industry looks for new sustained resources in deeper reservoirs, it encounters more difficult drilling conditions similar to those found in geothermal drilling.

“Oil and gas drilling must now go deeper into the ground, into harder and sometimes fractured rocks, and in hotter environments,” said Raymond.

Raymond said geothermal resources are typically associated with igneous and metamorphic rocks, which are harder than the sedimentary rocks through which most oil and gas wells are drilled. Igneous and metamorphic rocks also can contain large amounts of abrasives such as quartz, which can cause vibration and accelerated wear that damages drill bits. These types of rocks are often fractured, which can change the impact loading on drills and cause more damage.

“Drilling for geothermal energy is still the most difficult drilling on a cost-per-foot basis,” said Raymond. “You have to go through the hardest rock, sometimes at high temperatures and pressures. The DOE (Department of Energy) vision for advanced geothermal development is to drill to great depths, up to 30,000 feet, to access heat for geothermal.”

The economic risk for oil and gas wells also is different. Because many more oil and gas wells are drilled per year, that industry has the resources and can invest significantly in research and testing to improve the ability to drill under increasingly difficult conditions.

The geothermal industry has advanced far more slowly. Because geothermal drillers create only a small number of new wells each year, the drilling service industry finds it difficult and expensive to support innovation, since each well represents a substantial risk.

The Sandia/Navy demonstration project called for a test hole to evaluate geothermal resources in the Camp Billy Machen/Hot Mineral Spa region that would have been otherwise undetectable at the surface. The basement rock at the Chocolate Mountains includes granite and andesite, formations typically encountered during geothermal drilling.

A key part of the demonstration project was to test and evaluate PDC bits and related technologies in a real-world drilling environment. Sandia worked with PDC bit manufacturer National Oilwell Varco (NOV) of Houston to find specific solutions for the company’s ReedHycalog PDC bits. NOV provided commercially available drill bits and on-site experts to counsel the drilling contractor during the demonstration drill runs.

Sandia worked with the Navy’s geothermal drilling contractor, Barbour Well Inc. of Henderson, Nev., in evaluating drilling technologies during production drilling.

Sandia also formed partnerships with Albuquerque’s Prime Core Systems, and the Barbour Well mud logging company, Prospect Geotech, to field instruments to monitor the Barbour drill rig during the drilling process.

In the tests, two bits drilled 1,291 feet of the overall well depth of 3,000 feet. The two bits were in the well just over four days, penetrating approximately 30 feet per hour throughout their drilling interval, nearly three times better than standard roller bits used for comparison. The team retrieved and downloaded downhole data from both bits for analysis.

In a planned second phase of the project, Sandia will continue work with NOV to evaluate drill performance and improve the bit design and materials.

Cooperative work between the Navy and Sandia was covered by a memorandum of understanding between the Department of Defense and the DOE on collaborative development of renewable energy resources.

The demonstrations and planned phase two drilling are funded through an American Recovery and Reinvestment Act project, “Technology Development and Field Trials of EGS Drilling Systems,” under the supervision of DOE.

How PDC cutters are made

Polycrystalline diamond compact cutters on the cutting faces of bits allow more aggressive drilling than bits traditionally used for geothermal drilling. They are created by a sintering process. Graphite powder is applied to the leading face of a cutter made of tungsten carbide. The material assembly is compressed in three directions at pressures of 1 million pounds per square inch. When heated to a transition temperature, the graphite converts a to a 1-millimeter layer of synthetic diamond.

Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies and economic competitiveness.

Sandia news media contact: Stephanie Holinka, slholin@sandia.gov, 505-284-9227

Stephanie Holinka | EurekAlert!
Further information:
http://www.sandia.gov

More articles from Power and Electrical Engineering:

nachricht Improved stability of plastic light-emitting diodes
19.04.2018 | Max-Planck-Institut für Polymerforschung

nachricht Intelligent components for the power grid of the future
18.04.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>