Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant Optimisation Saves Energy

12.11.2010
• Heating processes use energy
• Heraeus Noblelight optimises existing plant

Can the coating dry more quickly? Is it possible to reduce the rejection rate? Does the plant use too much energy?


Dr Larisa von Riewel and Joerg Woell of the Consulting Team can often best identify optimisation opportunities for heating process directly on plant.
Copyright Heraeus Noblelight 2010


Radiation intensity is computed with Ray Tracing.
Copyright Heraeus Noblelight 2010

Many companies ask themselves questions like these. Energy and material costs are important considerations for industrial companies who wish to maintain or improve their competitiveness. At the same time, the optimisation of existing plant can often be the more sensible and cost-effective option over installing new plant. A newly established consulting team at Heraeus Noblelight now offers support through individual consultancy, practical planning and prompt implementation of measures to achieve optimisation of plant, equipment and processes.

A drying oven is often the bottleneck in a production line. In order to increase production output, a convection oven can, for example, be extended – but this is not possible in every factory. It is more efficient to replace the hot air with infrared heating or to use a combination of the two technologies, which can generally lead to savings in space and energy. However, the best way is to examine the complete system. “Recently, we have carried out detailed investigations of their system technology for one of our customers using Time-Distance diagrams,” explains Joerg Woell from the new consulting division at Heraeus Noblelight.

“In doing so, we could see immediately that a conversion of the drying process would make sense.” This showed that by using fast-acting carbon infrared emitters, with electronic linking to the conveyor system, there is an optimisation of the operating life and significant energy saving. Precise calculations showed that following the conversion only 460 kW of power was required compared with the previous 880 kW.

To carry out such calculations, the new Heraeus division also used modern numerical methods such as Ray Tracing and Computational Fluid Dynamic, in addition to the usual tests in the Application Centre and the information contained in the data banks built up over years.

Identifying and Implementing Optimisation Opportunities

The new consulting team provides consultancy and advice, planning and implementation of economical energy efficiency measures. In accordance with VDI 3922, Heraeus investigates production plants for potential improvements, using a practical approach which is independent of equipment manufacturers. Tests have been carried out for many years to analyse heating processes in our in-house Application Centre and on site. Experimental data in our databases, built up over decades, has also been useful for first assessments. Now we have added modern numerical techniques. Ray Tracing and Computational Fluid Dynamics are very valuable methods, for example, for optimising the homogeneity of heating on surfaces or minimising edge zone losses.

The use of modern infrared technology together with defined process optimisation increases the degree of utilisation of the production plant. It is important to understand the heating process precisely so that infrared heat can be used “on demand”. For example, if emitters are switched on only when a product to be heated actually requires heat, then energy is saved, operating life is optimised and efficiency is increased significantly.

“In the aforementioned case, we could not only achieve 60% energy savings but also a reduction in rework rate,” enthused Joerg Woell. The measures established are evaluated in terms of economic viability to illustrate the possible energy-saving and production opportunities.

Heraeus Noblelight GmbH with its headquarters in Hanau and with subsidiaries in the USA, Great Britain, France, China, Australia and Puerto Rico, is one of the technology and market leaders in the production of specialty light sources. In 2009, Heraeus Noblelight had an annual turnover of 71.6 Million € and employed 707 people worldwide. The organisation develops, manufactures and markets infrared and ultraviolet emitters for applications in industrial manufacture, environmental protection, medicine and cosmetics, research, development and analytical laboratories.

Heraeus, the precious metals and technology group headquartered in Hanau, Germany, is a global, private company with over 155 years of tradition. Our businesses include precious metals, sensors, biomaterials and medical products, dental products, quartz glass, and specialty light sources. With product revenues of € 2.6 billion and precious metal trading revenues of € 13.6 billion, as well as more than 12,300 employees in over 110 subsidiaries worldwide, Heraeus holds a leading position in its global markets.

Further Information:

Readers:
Heraeus Noblelight GmbH
Reinhard-Heraeus-Ring 7
D-63801 Kleinostheim
Phone +49 6181/35-8545, Fax +49 6181/35-16 8545
E-Mail hng-infrared@heraeus.com
Press:
Dr. Marie-Luise Bopp
Heraeus Noblelight GmbH,
Abteilung Marketing/Werbung
Phone +49 6181/35-8547, Fax +49 6181/35-16 8547
E-Mail marie-luise.bopp@heraeus.com

Dr. Marie-Luise Bopp | Heraeus Noblelight GmbH
Further information:
http://www.heraeus-noblelight.com

More articles from Power and Electrical Engineering:

nachricht Engineers program tiny robots to move, think like insects
15.12.2017 | Cornell University

nachricht Electromagnetic water cloak eliminates drag and wake
12.12.2017 | Duke University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>