Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant Optimisation Saves Energy

12.11.2010
• Heating processes use energy
• Heraeus Noblelight optimises existing plant

Can the coating dry more quickly? Is it possible to reduce the rejection rate? Does the plant use too much energy?


Dr Larisa von Riewel and Joerg Woell of the Consulting Team can often best identify optimisation opportunities for heating process directly on plant.
Copyright Heraeus Noblelight 2010


Radiation intensity is computed with Ray Tracing.
Copyright Heraeus Noblelight 2010

Many companies ask themselves questions like these. Energy and material costs are important considerations for industrial companies who wish to maintain or improve their competitiveness. At the same time, the optimisation of existing plant can often be the more sensible and cost-effective option over installing new plant. A newly established consulting team at Heraeus Noblelight now offers support through individual consultancy, practical planning and prompt implementation of measures to achieve optimisation of plant, equipment and processes.

A drying oven is often the bottleneck in a production line. In order to increase production output, a convection oven can, for example, be extended – but this is not possible in every factory. It is more efficient to replace the hot air with infrared heating or to use a combination of the two technologies, which can generally lead to savings in space and energy. However, the best way is to examine the complete system. “Recently, we have carried out detailed investigations of their system technology for one of our customers using Time-Distance diagrams,” explains Joerg Woell from the new consulting division at Heraeus Noblelight.

“In doing so, we could see immediately that a conversion of the drying process would make sense.” This showed that by using fast-acting carbon infrared emitters, with electronic linking to the conveyor system, there is an optimisation of the operating life and significant energy saving. Precise calculations showed that following the conversion only 460 kW of power was required compared with the previous 880 kW.

To carry out such calculations, the new Heraeus division also used modern numerical methods such as Ray Tracing and Computational Fluid Dynamic, in addition to the usual tests in the Application Centre and the information contained in the data banks built up over years.

Identifying and Implementing Optimisation Opportunities

The new consulting team provides consultancy and advice, planning and implementation of economical energy efficiency measures. In accordance with VDI 3922, Heraeus investigates production plants for potential improvements, using a practical approach which is independent of equipment manufacturers. Tests have been carried out for many years to analyse heating processes in our in-house Application Centre and on site. Experimental data in our databases, built up over decades, has also been useful for first assessments. Now we have added modern numerical techniques. Ray Tracing and Computational Fluid Dynamics are very valuable methods, for example, for optimising the homogeneity of heating on surfaces or minimising edge zone losses.

The use of modern infrared technology together with defined process optimisation increases the degree of utilisation of the production plant. It is important to understand the heating process precisely so that infrared heat can be used “on demand”. For example, if emitters are switched on only when a product to be heated actually requires heat, then energy is saved, operating life is optimised and efficiency is increased significantly.

“In the aforementioned case, we could not only achieve 60% energy savings but also a reduction in rework rate,” enthused Joerg Woell. The measures established are evaluated in terms of economic viability to illustrate the possible energy-saving and production opportunities.

Heraeus Noblelight GmbH with its headquarters in Hanau and with subsidiaries in the USA, Great Britain, France, China, Australia and Puerto Rico, is one of the technology and market leaders in the production of specialty light sources. In 2009, Heraeus Noblelight had an annual turnover of 71.6 Million € and employed 707 people worldwide. The organisation develops, manufactures and markets infrared and ultraviolet emitters for applications in industrial manufacture, environmental protection, medicine and cosmetics, research, development and analytical laboratories.

Heraeus, the precious metals and technology group headquartered in Hanau, Germany, is a global, private company with over 155 years of tradition. Our businesses include precious metals, sensors, biomaterials and medical products, dental products, quartz glass, and specialty light sources. With product revenues of € 2.6 billion and precious metal trading revenues of € 13.6 billion, as well as more than 12,300 employees in over 110 subsidiaries worldwide, Heraeus holds a leading position in its global markets.

Further Information:

Readers:
Heraeus Noblelight GmbH
Reinhard-Heraeus-Ring 7
D-63801 Kleinostheim
Phone +49 6181/35-8545, Fax +49 6181/35-16 8545
E-Mail hng-infrared@heraeus.com
Press:
Dr. Marie-Luise Bopp
Heraeus Noblelight GmbH,
Abteilung Marketing/Werbung
Phone +49 6181/35-8547, Fax +49 6181/35-16 8547
E-Mail marie-luise.bopp@heraeus.com

Dr. Marie-Luise Bopp | Heraeus Noblelight GmbH
Further information:
http://www.heraeus-noblelight.com

More articles from Power and Electrical Engineering:

nachricht Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts
08.12.2016 | Institut für Solarenergieforschung GmbH

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>