Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Planar Power

14.10.2010
A redesign of sodium-nickel chloride batteries promises to overcome some of the obstacles long associated with rechargeable batteries.

Replacing their typical cylindrical shape with a flat disc design allows the battery to deliver 30 percent more power at lower temperatures, according to work published by the Department of Energy's Pacific Northwest National Laboratory in the October 8 issue of ECS Transactions, a trade journal.

Researchers say these sodium-beta batteries could eventually be used in electricity substations to balance the generation and delivery of wind and solar power on to the grid.

Because the battery's main components include abundant materials such as alumina, sodium chloride and nickel, they are less expensive to manufacture than lithium-ion batteries, and could still offer the performance necessary to compete for consumers' interest. In addition, compared to other battery systems, sodium-beta batteries are safer and can help incorporate renewable energy sources into the electrical system easier.

"This planar sodium battery technology shows potential as an option for integrating more solar and wind power into our electric grid," said Carl Imhoff, electricity infrastructure sector manager at PNNL.

Sodium-beta alumina batteries have been around since the 1960s but their tubular, cylindrical shape does not allow efficient discharge of stored electrochemical energy. This inefficiency causes technical issues associated with operating at high temperatures and raises concern about the cost-effectiveness of the tubular batteries.

Lithium-ion batteries surpassed sodium-beta batteries because they perform better. However, materials for lithium batteries are limited, making them more expensive to produce. Safety also has been a concern for rechargeable lithium batteries because they can be prone to thermal runaway, a condition where the battery continually heats up until it catches fire.

"The PNNL planar battery's flat and thin design has many advantages over traditional, tubular sodium nickel chloride batteries," said PNNL Scientist Xiaochuan Lu, co-author of the paper.

To take advantage of inexpensive materials, the PNNL researchers thought a redesign of the sodium-beta batteries might overcome the technical and cost issues: the cylindrical sodium beta batteries contain a thick, solid electrolyte and cathode that create considerable resistance when the sodium ion travels back and forth between the anode and the cathode while the battery is in use. This resistance reduces the amount of power produced. To lower the resistance, temperature must be elevated. But increasing operation temperature will shorten the battery's lifespan.

The researchers then tested the performance of their redesigned sodium-nickel chloride planar batteries, which look like wafers or large buttons.

The researchers found that a planar design allows for a thinner cathode and a larger surface area for a given cell volume. Because the ions can flow in a larger area and shorter pathway, they experience lower resistance. Next, the battery's design incorporates a thin layer of solid electrolytes, which also lowers the resistance. Because of the decrease of resistance, the battery can afford to be operated at a lower temperature while maintaining a power output 30% more than a similar-sized battery with a cylindrical design.

Finally, the battery's flat components can easily be stacked in a way that produces a much more compact battery, making it an attractive option for large-scale energy storage, such as on the electrical grid.

"Our goal is to get a safer, more affordable battery into the market for energy storage. This development in battery technology gets us one step closer," said Lu.

Researchers at PNNL and EaglePicher LLC received funding from the Advanced Research Projects Agency — Energy, or ARPA-E, earlier this year to conduct the research, and will work together to improve the battery's design, lifespan and power capacity.

The research was funded by PNNL and by ARPA-E.

Reference: Xiaochuan Lu, Greg Coffey, Kerry Meinhardt, Vincent Sprenkle, Zhenguo Yang, and John P. Lemmon, High Power Planar Sodium-Nickel Chloride Battery, ECS Trans. 28, 7 (2010), doi:10.1149/1.3492326, in press.

Pacific Northwest National Laboratory (www.pnl.gov) is a Department of Energy Office of Science national laboratory where interdisciplinary teams advance science and technology and deliver solutions to America's most intractable problems in energy, the environment and national security. PNNL employs 4,900 staff, has an annual budget of nearly $1.1 billion, and has been managed by Ohio-based Battelle since the lab's inception in 1965. Follow PNNL on Facebook, LinkedIn and Twitter.

| Newswise Science News
Further information:
http://www.pnl.gov/news/release.aspx?id=824

More articles from Power and Electrical Engineering:

nachricht Stretchable biofuel cells extract energy from sweat to power wearable devices
22.08.2017 | University of California - San Diego

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>