Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pitt team publishes new findings from mind-controlled robot arm project

17.12.2014

Using mind control, woman with quadriplegia moves robot arm and hand in '10D'

In another demonstration that brain-computer interface technology has the potential to improve the function and quality of life of those unable to use their own arms, a woman with quadriplegia shaped the almost human hand of a robot arm with just her thoughts to pick up big and small boxes, a ball, an oddly shaped rock, and fat and skinny tubes.


Using mind control, a woman with quadriplegia moves robot arm and hand in.

Credit: Photo credit: Journal of Neural Engineering/IOP Publishing

The findings by researchers at the University of Pittsburgh School of Medicine, published online today in the Journal of Neural Engineering, describe, for the first time, 10-degree brain control of a prosthetic device in which the trial participant used the arm and hand to reach, grasp, and place a variety of objects.

"Our project has shown that we can interpret signals from neurons with a simple computer algorithm to generate sophisticated, fluid movements that allow the user to interact with the environment," said senior investigator Jennifer Collinger, Ph.D., assistant professor, Department of Physical Medicine and Rehabilitation (PM&R), Pitt School of Medicine, and research scientist for the VA Pittsburgh Healthcare System.

In February 2012, small electrode grids with 96 tiny contact points each were surgically implanted in the regions of trial participant Jan Scheuermann's brain that would normally control her right arm and hand movement.

Each electrode point picked up signals from an individual neuron, which were then relayed to a computer to identify the firing patterns associated with particular observed or imagined movements, such as raising or lowering the arm, or turning the wrist. That "mind-reading" was used to direct the movements of a prosthetic arm developed by Johns Hopkins Applied Physics Laboratory.

Within a week of the surgery, Ms. Scheuermann could reach in and out, left and right, and up and down with the arm to achieve 3D control, and before three months had passed, she also could flex the wrist back and forth, move it from side to side and rotate it clockwise and counter-clockwise, as well as grip objects, adding up to 7D control. Those findings were published in The Lancet in 2012.

"In the next part of the study, described in this new paper, Jan mastered 10D control, allowing her to move the robot hand into different positions while also controlling the arm and wrist," said Michael Boninger, M.D., professor and chair, PM&R, and director of the UPMC Rehabilitation Institute.

To bring the total of arm and hand movements to 10, the simple pincer grip was replaced by four hand shapes: finger abduction, in which the fingers are spread out; scoop, in which the last fingers curl in; thumb opposition, in which the thumb moves outward from the palm; and a pinch of the thumb, index and middle fingers. As before, Ms. Scheuermann watched animations of and imagined the movements while the team recorded the signals her brain was sending in a process called calibration. Then, they used what they had learned to read her thoughts so she could move the hand into the various positions.

"Jan used the robot arm to grasp more easily when objects had been displayed during the preceding calibration, which was interesting," said co-investigator Andrew Schwartz, Ph.D., professor of Neurobiology, Pitt School of Medicine. "Overall, our results indicate that highly coordinated, natural movement can be restored to people whose arms and hands are paralyzed."

After surgery in October to remove the electrode arrays, Ms. Scheuermann concluded her participation in the study.

"This is been a fantastic, thrilling, wild ride, and I am so glad I've done this," she said. "This study has enriched my life, given me new friends and coworkers, helped me contribute to research and taken my breath away. For the rest of my life, I will thank God every day for getting to be part of this team."

The team included John E. Downey, BS, Elizabeth Tyler-Kabara, M.D., Ph.D., and Michael Boninger, M.D., all of the University of Pittsburgh School of Medicine; and lead author Brian Wodlinger, Ph.D., now of Imagistx, Inc. The project was funded by the Defense Advanced Research Projects Agency, the Department of Veterans Affairs, and the UPMC Rehabilitation Institute.

About the University of Pittsburgh School of Medicine

As one of the nation's leading academic centers for biomedical research, the University of Pittsburgh School of Medicine integrates advanced technology with basic science across a broad range of disciplines in a continuous quest to harness the power of new knowledge and improve the human condition. Driven mainly by the School of Medicine and its affiliates, Pitt has ranked among the top 10 recipients of funding from the National Institutes of Health since 1998. In rankings recently released by the National Science Foundation, Pitt ranked fifth among all American universities in total federal science and engineering research and development support.

Likewise, the School of Medicine is equally committed to advancing the quality and strength of its medical and graduate education programs, for which it is recognized as an innovative leader, and to training highly skilled, compassionate clinicians and creative scientists well-equipped to engage in world-class research. The School of Medicine is the academic partner of UPMC, which has collaborated with the University to raise the standard of medical excellence in Pittsburgh and to position health care as a driving force behind the region's economy. For more information about the School of Medicine, see http://www.medschool.pitt.edu.

Anita Srikameswaran | EurekAlert!

More articles from Power and Electrical Engineering:

nachricht Waste from paper and pulp industry supplies raw material for development of new redox flow batteries
12.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Low-cost battery from waste graphite
11.10.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Taming 'wild' electrons in graphene

23.10.2017 | Physics and Astronomy

Mountain glaciers shrinking across the West

23.10.2017 | Earth Sciences

Scientists track ovarian cancers to site of origin: Fallopian tubes

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>