Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pitt Researchers Invent a Switch That Could Improve Electronics

02.12.2011
Researchers at the University of Pittsburgh have invented a new type of electronic switch that performs electronic logic functions within a single molecule.

The incorporation of such single-molecule elements could enable smaller, faster, and more energy-efficient electronics. The research findings, supported by a $1 million grant from the W.M. Keck Foundation, were published online in the Nov. 14 issue of Nano Letters.


“This new switch is superior to existing single-molecule concepts,” said Hrvoje Petek, principal investigator and professor of physics and chemistry in the Kenneth P. Dietrich School of Arts and Sciences and codirector of the Petersen Institute for NanoScience and Engineering (PINSE) at Pitt. “We are learning how to reduce electronic circuit elements to single molecules for a new generation of enhanced and more sustainable technologies.”

The switch was discovered by experimenting with the rotation of a triangular cluster of three metal atoms held together by a nitrogen atom, which is enclosed entirely within a cage made up entirely of carbon atoms. Petek and his team found that the metal clusters encapsulated within a hollow carbon cage could rotate between several structures under the stimulation of electrons. This rotation changes the molecule’s ability to conduct an electric current, thereby switching among multiple logic states without changing the spherical shape of the carbon cage. Petek says this concept also protects the molecule so it can function without influence from outside chemicals.

Because of their constant spherical shape, the prototype molecular switches can be integrated as atom-like building blocks the size of one nanometer (100,000 times smaller than the diameter of a human hair) into massively parallel computing architectures.

The prototype was demonstrated using an Sc3N@C80 molecule sandwiched between two electrodes consisting of an atomically flat copper oxide substrate and an atomically sharp tungsten tip. By applying a voltage pulse, the equilateral triangle-shaped Sc3N could be rotated predictably among six logic states.

The research was led by Petek in collaboration with chemists at the Leibnitz Institute for Solid State Research in Dresden, Germany, and theoreticians at the University of Science and Technology of China in Hefei, People's Republic of China. The experiments were performed by postdoctoral researcher Tian Huang and research assistant professor Min Feng, both in Pitt’s Department of Physics and Astronomy.

B. Rose Huber | EurekAlert!
Further information:
http://www.pitt.edu

More articles from Power and Electrical Engineering:

nachricht Team develops fast, cheap method to make supercapacitor electrodes
18.07.2017 | University of Washington

nachricht Magic off the cuff
11.07.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>