Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pitt Engineers to Design Affordable CO2 Thickener to Augment Oil Extraction

17.10.2012
Crude oil extraction could be improved significantly and accessible domestic oil reserves could be expanded with an economical CO2 thickener being developed by University of Pittsburgh engineers, thanks to a $1.3 million grant from the U.S. Department of Energy.

Current oil-extraction methods across the United States involve oil being “pushed” from underground layers of porous sandstone or limestone reservoirs using a first-water-then-CO2 method known as the water-alternating-gas method.

CO2—which is obtained from natural CO2 reservoirs and pipelined to oil reservoirs—is an ideal candidate for oil extraction given its ability to push and dissolve oil from underground layers of porous rock. However, its viscosity (or thickness) is too low to efficiently extract oil. As such, it tends to “finger” through the oil rather than sweep oil forward toward the production well. This process, “viscous fingering,” results in oil production companies recovering only a small fraction of the oil that’s in a field.

During the late 1990s, a team at Pitt was the first to demonstrate that it was possible to design additives that could greatly enhance CO2’s viscosity at low concentrations, although the compounds were both costly and environmentally problematic.

“The thickeners we developed years ago were too expensive for wide use,” said principal coinvestigator Eric Beckman, George M. Bevier Professor of Engineering in Pitt’s Swanson School of Engineering. “So, in this proposal, we’re looking at designing candidates that can do the job at a reasonable cost.”

Beckman and Robert Enick, principal coinvestigator and Bayer Professor and Vice Chair for Research in Pitt’s Department of Chemical and Petroleum Engineering, intend to build upon earlier Pitt models of CO2 thickeners, but this time with a more affordable design that could cost only several dollars per pound. Ideally, their small molecule thickener would be able to increase the viscosity of pure CO2 100 times—something that hasn’t previously been accomplished.

“An affordable CO2 thickener would represent a transformational advance in enhanced oil recovery,” said Enick. “More than 90 percent of CO2 injection projects in the U.S. employ the WAG method to hinder the fingering of the CO2. However, if a thickener could be identified that could increase the viscosity of the CO2 to a value comparable to that of the oil in the underground layers of rock, then the fingering would be inhibited, the need to inject water would be eliminated, and more oil would be recovered more quickly using less CO2.”

“It’s clear there exists a very wide market for this type of CO2 thickener,” said Beckman. “It’s been long recognized as a game-changing transformative technology because it has the potential to increase oil recovery while eliminating water injection altogether.”

This $1.3 million grant from the Department of Energy is through the National Energy Technology Laboratory under the category of “Unconventional Gas and Oil Technologies.”

10/15/12/mab/cjhm
University Units
Swanson School of Engineering

B. Rose Huber | EurekAlert!
Further information:
http://www.pitt.edu

More articles from Power and Electrical Engineering:

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

nachricht Engineers find better way to detect nanoparticles
14.08.2017 | Washington University in St. Louis

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>