Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicist develops battery using new source of energy

13.03.2009
His discovery is a 'proof of principle' of the existence of a 'spin battery'

Researchers at the University of Miami and at the Universities of Tokyo and Tohoku, Japan, have been able to prove the existence of a "spin battery," a battery that is "charged" by applying a large magnetic field to nano-magnets in a device called a magnetic tunnel junction (MTJ).

The new technology is a step towards the creation of computer hard drives with no moving parts, which would be much faster, less expensive and use less energy than current ones. In the future, the new battery could be developed to power cars. The study will be published in an upcoming issue of Nature and is available in an online advance publication of the journal.

The device created by University of Miami Physicist Stewart E. Barnes, of the College of Arts and Sciences and his collaborators can store energy in magnets rather than through chemical reactions. Like a winding up toy car, the spin battery is "wound up" by applying a large magnetic field --no chemistry involved. The device is potentially better than anything found so far, said Barnes.

"We had anticipated the effect, but the device produced a voltage over a hundred times too big and for tens of minutes, rather than for milliseconds as we had expected," Barnes said. "That this was counterintuitive is what lead to our theoretical understanding of what was really going on."

The secret behind this technology is the use of nano-magnets to induce an electromotive force. It uses the same principles as those in a conventional battery, except in a more direct fashion. The energy stored in a battery, be it in an iPod or an electric car, is in the form of chemical energy. When something is turned "on" there is a chemical reaction which occurs and produces an electric current. The new technology converts the magnetic energy directly into electrical energy, without a chemical reaction. The electrical current made in this process is called a spin polarized current and finds use in a new technology called "spintronics."

The new discovery advances our understanding of the way magnets work and its immediate application is to use the MTJs as electronic elements which work in different ways to conventional transistors. Although the actual device has a diameter about that of a human hair and cannot even light up an LED (light-emitting diode--a light source used as electronic component), the energy that might be stored in this way could potentially run a car for miles. The possibilities are endless, Barnes said.

"There are magnets hidden away in many things, for example there are several in a mobile telephone, many in a car, and they are what keeps your refrigerator closed," he said. "There are so many that even a small change in the way we understand of how they work, and which might lead to only a very small improvement in future machines, has a significant financial and energetic impact."

Marie Guma-Diaz | EurekAlert!
Further information:
http://www.miami.edu
http://www.nature.com/nature/index.html

More articles from Power and Electrical Engineering:

nachricht New tech for commercial Lithium-ion batteries finds they can be charged 5 times fast
20.02.2018 | University of Warwick

nachricht In best circles: First integrated circuit from self-assembled polymer
19.02.2018 | Max-Planck-Institut für Polymerforschung

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>